answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neporo4naja [7]
2 years ago
10

An archer fires an arrow, which produces a muffled "thwok" as it hits a target. If the archer hears the "thwok" exactly 1 s afte

r firing the arrow and the average speed of the arrow was 40 mis, what was the distance separating the archer and the target? Use 340 m/ s for the speed of sound.
Physics
1 answer:
aniked [119]2 years ago
6 0

Answer:

35,79 meters

Explanation:

So, we got an archer, and we got a target. Lets call the distance between this two d.

Now, the archer fires the arrow, that, in a time t_{arrow} travels the distance d with a speed v_{arrow} of 40 m/s and hits the target. We can see that the equation will be:

v_{arrow} * t_{arrow} = d\\ \\40 \frac{m}{s} * t_{arrow} = d

Immediately after this, the arrow produces a muffled sound, which will travel the distance d at  340 m/s in a time t_{sound}. Obtaining :

v_{sound} * t_{sound} = d\\ \\340 \frac{m}{s} * t_{sound} = d.

Finally, the sound reaches the archer, exactly 1 second after he fired the bow, so:

t_{arrow} + t _{sound} = 1 s.

This equation allows us to write:

t _{sound} = 1 s - t_{arrow}.

Plugging this  relationship in the distance equation for the sound:

340 \frac{m}{s} * t_{sound} = d \\ \\ 340 \frac{m}{s} * (1 s- t_{arrow}) = d.

Now, we can replace d from the first equation, and obtain:

40 \frac{m}{s} * t_{arrow} = d \\ 40 \frac{m}{s} * t_{arrow} = 340 \frac{m}{s} * (1 s- t_{arrow}).

Now, we can just work a little bit:

40 \frac{m}{s} * t_{arrow} = 340 \frac{m}{s} * 1 s - 340 \frac{m}{s} * t_{arrow} \\ \\ 40 \frac{m}{s} * t_{arrow} + 340 \frac{m}{s} * t_{arrow} = 340 m \\ \\ 380 \frac{m}{s} * t_{arrow} = 340 m \\ \\ t_{arrow} = \frac{340 m}{380 \frac{m}{s}} \\ \\ t_{arrow} = 0.8947 s.

Now, we can just plug this value into the first equation:

40 \frac{m}{s} * t_{arrow} = d

40 \frac{m}{s} * 340/380 s = 35,79 s = d

You might be interested in
Mrs. Gonzalez is about to give birth and Mr. Gonzalez is rushing her to the hospital at a speed of 30.0 m/s. Witnessing the spee
valina [46]

Answer: The frequency = 1714.3Hz

Explanation: The solution can be achieved by using doppler effect formula.

Since the source is moving toward the observer, the velocity of the observer will be positive.

Please find the attached file for the solution

3 0
1 year ago
A system of two paint buckets connected by a lightweight rope is released from rest with the 12.0-kg bucket 2.00 m above the flo
NISA [10]

Explanation:

The given data is as follows.

    Mass of small bucket (m) = 4 kg

    Mass of big bucket (M) = 12 kg

    Initial velocity (v_{o}) = 0 m/s

    Final velocity (v_{f}) = ?

  Height H_{o} = h_{f} = 2 m

and,    H_{f} = h_{o} = 0 m

Now, according to the law of conservation of energy

         starting conditions = final conditions

  \frac{1}{2}MV^{2}_{o} + Mgh_{o} + \frac{1}{2}mv^{2}_{o} + mgh_{o} = \frac{1}{2}MV^{2}_{f} + Mgh_{f} + \frac{1}{2}mv^{2}_{f} + mgh_{f}

     \frac{1}{2}(12)(0)^{2} + (12)(9.81)(2) + \frac{1}{2}(4)(0)^{2} + (4)(9.81)(0) = \frac{1}{2}(12)V^{2}_{f} + (12)(9.81)(0) + \frac{1}{2}(4)V^{2}_{f} + (4)(9.81)(2)

                 235.44 = 8V^{2}_{f} + 78.48

                V_{f} = 4.43 m/s

Thus, we can conclude that the speed with which this bucket strikes the floor is 4.43 m/s.

3 0
1 year ago
A car hits another and the two bumpers lock together during the collision. is this an elastic or inelastic collision?
valkas [14]
Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.
8 0
2 years ago
Somewhere in the vast flat tundra of planet Tehar, a projectile is launched from the ground at an angle of 60 degrees. It reache
Nina [5.8K]

Answer:

R = 0.0503 m

Explanation:

This is a projectile launching exercise, to find the range we can use the equation

       R = v₀² sin 2θ / g

How we know the maximum height

      v_{f}² =v_{oy}² - 2 g y

      v_{f}= 0

      v_{oy} = √ 2 g y

      v_{oy} = √ 2 9.8 / 15

      v_{oy} = 1.14 m / s

Let's use trigonometry to find the speed

    sin θ = v_{oy} / vo

    vo = v_{oy} / sin θ

    vo = 1.14 / sin 60

    vo = 1.32 m / s

We calculate the range with the first equation

     R = 1.32² sin(2 60) / 30

    R = 0.0503 m

3 0
1 year ago
Calculate the force a 70.0-kg high jumper must exert on the ground to produce an upward acceleration 4.00 times the acceleration
worty [1.4K]

Answer:

3433.5 N

Explanation:

g = Acceleration due to gravity = 9.81 m/s²

m = Mass of person = 70 kg

According to the question

a = Acceleration

4g=4\times 9.81\\\Rightarrow a=39.24\ m/s^2

Balancing the forces we have

F-w=ma\\\Rightarrow F=ma+w\\\Rightarrow F=ma+mg\\\Rightarrow F=m(a+g)\\\Rightarrow F=70(39.24+9.81)\\\Rightarrow F=3433.5\ N

The required force is 3433.5 N

3 0
1 year ago
Other questions:
  • At 1 atm pressure, the heat of sublimation of gallium is 277 kj/mol and the heat of vaporization is 271 kj/mol. to the correct n
    13·1 answer
  • The amplitude of a lightly damped harmonic oscillator decreases from 60.0 cm to 40.0 cm in 10.0 s. What will be the amplitude of
    5·1 answer
  • Four students measured the acceleration of gravity. The accepted value for their location is 9.78 m/s2. Which student's measurem
    9·2 answers
  • What are close-toed shoes least likely to provide protection against?
    14·2 answers
  • A small sphere with mass m carries a positive charge q and is attached to one end of a silk fiber of length L. The other end of
    5·1 answer
  • Two red blood cells each have a mass of 9.05×10−14 kg and carry a negative charge spread uniformly over their surfaces. The repu
    12·1 answer
  • In Part 6.2.2, you will determine the wavelength of the laser by shining the laser beam on a "diffraction grating", a set of reg
    14·1 answer
  • What is the formula for calculating the efficiency of a heat engine? Efficiency = StartFraction T Subscript h Baseline minus T S
    7·1 answer
  • Aldis is swinging a ball tied to the end of a string over his head. Suddenly, the string breaks and the ball flies away. Arrow b
    5·2 answers
  • What is the mass and density of 237 mL of water
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!