Answer:
-40 kJ
80 kJ
Explanation:
Work is equal to the area under the pressure vs volume graph.
W = ∫ᵥ₁ᵛ² P dV
2.27) Pressure and volume are linearly related. When we graph P vs V, the area under the line is a trapezoid. So the work is:
W = ½ (P₁ + P₂) (V₂ − V₁)
W = ½ (100 kPa + 300 kPa) (0.1 m³ − 0.3 m³)
W = -40 kJ
2.29) Pressure and volume are inversely proportional:
pV = k
The initial pressure and volume are 500 kPa and 0.1 m³. So the constant is:
(500) (0.1) = k
k = 50
The final pressure is 100 kPa. So the final volume is:
(100) V = 50
V = 0.5
The work is therefore:
W = ∫ᵥ₁ᵛ² P dV
W = ∫₀₁⁰⁵ (50/V) dV
W = 50 ln(V) |₀₁⁰⁵
W = 50 (ln 0.5 − ln 0.1)
W ≈ 80 kJ
Answer:
5702.88 J or 5.7mJ
Explanation:
Given that :
C 1 = 6.0-μF
C 2 = 4.0-μF
V 1 = 50V
V 2 = 34V
Note that : Q = CV
Q 1 = C1 * V1
Q 1 = 50×6 = 300μC
Q 2 = 34×4 = 136μC
Parallel connection = C 1 + C 2
= 6+4 = 10μC
V = Qt/C
Where Qt = Q1+Q2
V = Q1+Q2/C
V = 300+136/10
V = 437/10
V = 43.6volts
Uc1 = 1/2×C1V^2
= 1/2 × 6μF × 43.6^2
= 1/2 × 6μF × 1900.96
= 3μF × 1900.96volts
= 5702.88J
= 5702.88J/1000
= 5.7mJ
Answer: 80m
Explanation:
Distance of balloon to the ground is 3150m
Let the distance of Menin's pocket to the ground be x
Let the distance between Menin's pocket to the balloon be y
Hence, x=3150-y------1
Using the equation of motion,
V^2= U^s + 2gs--------2
U= initial speed is 0m/s
g is replaced with a since the acceleration is under gravity (g) and not straight line (a), hence g is taken as 10m/s
40m/s is contant since U (the coin is at rest is 0) hence V =40m/s
Slotting our values into equation 2
40^2= 0^2 + 2 * 10* (3150-y)
1600 = 0 + 63000 - 20y
1600 - 63000 = - 20y
-61400 = - 20y minus cancel out minus on both sides of the equation
61400 = 20y
Hence y = 61400/20
3070m
Hence, recall equation 1
x = 3150 - 3070
80m
I hope this solve the problem.
Answer:
v = 13.19 m / s
Explanation:
This problem must be solved using Newton's second law, we create a reference system where the x-axis is perpendicular to the cylinder and the Y-axis is vertical
X axis
N = m a
Centripetal acceleration is
a = v² / r
Y Axis
fr -W = 0
fr = W
The force of friction is
fr = μ N
Let's calculate
μ (m v² / r) = mg
μ v² / r = g
v² = g r / μ
v = √ (g r /μ)
v = √ (9.8 11 / 0.62)
v = 13.19 m / s
He should choose the room that’s 15 F.
-5 C = 23 F
Meaning that 15 F is below -5 C and 25 F is not.