Answer:
1.25 kgm²/sec
Explanation:
Disk inertia, Jd =
Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²
Disk angular speed =
ωd = 0.1047 * 30 = 3.1416 rad/sec
Hollow cylinder inertia =
Jc = 3.7 * 0.40² = 0.592 kgm²
Initial Kinetic Energy of the disk
Ekd = 1/2 * Jd * ωd²
Ekd = 0.148 * 9.87
Ekd = 1.4607 joule
Ekd = (Jc + 1/2*Jd) * ω²
Final angular speed =
ω² = Ekd/(Jc+1/2*Jd)
ω² = 1.4607/(0.592+0.148)
ω² = 1.4607/0.74
ω² = 1.974
ω = √1.974
ω = 1.405 rad/sec
Final angular momentum =
L = (Jd+Jc) * ω
L = 0.888 * 1.405
L = 1.25 kgm²/sec
Answer:
(i) 208 cm from the pivot
(ii) Move further from the pivot
Explanation:
(i) Sum of the moments about the pivot of the seesaw is zero.
∑τ = Iα
(50 kg) (10 N/kg) (2.5 m) + (60 kg) (10 N/kg) x = 0
1250 Nm + 600 N x = 0
x = -2.08 m
Kenny should sit 208 cm on the other side of the pivot.
(ii) To increase the torque, Kenny should move away from the pivot.
Answer:R=1607556m
θ=180degrees
Explanation:
d1=74.8m
d2=160.7km=160.7km*1000
d2=160700m
d3=80m
d4=198.1m
Using analytical method :
Rx=-(160700+75*cos(41.8))= -160755.9m
Ry= -(74.8+75sin(41.8))-198.1=73m
Magnitude, R:
R=√Rx+Ry
R=√160755.9^2+20^2=160755.916
R=160756m
Direction,θ:
θ=arctan(Rx/Ry)
θ=arctan(-73/160755.9)
θ=-7.9256*10^-6
Note that θ is in the second quadrant, so add 180
θ=180-7.9256*10^6=180degrees
Answer:
100/10 = 10 , 10 × 10 = 100÷20 = 5
I'm pretty sure its wrong
Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.