Helium atom, in other words, it consistis of a particle having four protons and two neutrons.
So the equation for angular velocity is
Omega = 2(3.14)/T
Where T is the total period in which the cylinder completes one revolution.
In order to find T, the tangential velocity is
V = 2(3.14)r/T
When calculated, I got V = 3.14
When you enter that into the angular velocity equation, you should get 2m/s
Answer:
(a) 29 cm
(b) 43.5 cm
Explanation:
(a) when loop A is slack, there are three forces acting on the metre rule.
-0.9 N at 50 cm mark
T at 70 cm mark
-2 N at x
Taking the sum of the torques about B:
∑τ = Iα
(-0.9 N) (50 cm − 70 cm) + (-2 N) (x − 70 cm) = 0
18 Ncm − 2 N (x − 70 cm) = 0
2 N (x − 70 cm) = 18 Ncm
x − 70 cm = 9 cm
x = 79 cm
The distance from the center is |50 cm − 79 cm| = 29 cm.
(b) when loop B is slack, there are three forces acting on the metre rule.
-0.9 N at 50 cm mark
T at 20 cm mark
-2 N at x
Taking the sum of the torques about A:
∑τ = Iα
(-0.9 N) (50 cm − 20 cm) + (-2 N) (x − 20 cm) = 0
-27 Ncm − 2 N (x − 20 cm) = 0
2 N (x − 20 cm) = -27 Ncm
x − 20 cm = -13.5 cm
x = 6.5 cm
The distance from the center is |50 cm − 6.5 cm| = 43.5 cm
<em>To determine the y component of velocity of a projectile </em><u><em>sine </em></u><em>operation is performed on the angle of launch.</em>
<u>Answer:</u> <em>sine</em>
<u>Explanation:</u>
Thus 
The initial velocity u can be resolved along two directions.
Along the X direction initial velocity = u cos θ
Along y direction initial velocity= u sin θ
From the equation of motion 
Thus velocity along x direction
=u cos θ
Velocity along y direction
= u sinθ -gt
Sign of g is negative.
Answer:
C
Explanation:
If the arrows represent light rays, then Rachel sees a candle flame when the light released by the flame is received by her eyes.