answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
2 years ago
11

Three point charges are positioned on the x axis. If the charges and corresponding positions are +32 µC at x = 0, +20 µC at x =

40 cm, and –60 µC at x = 60 cm, what is the magnitude of the electrostatic force on the +32-µC charge? *
Physics
1 answer:
amid [387]2 years ago
7 0

Answer:

Magnitude of the electrostatic force on the +32 µC charge, F_{net} = 12 N

Explanation:

Let q₁ = +32 µC, x₁ = 0

q₂ = +20 µC,  x₂ = 40 cm = 0.4 m

q₃ = -60 µC,  x₃ = 60 cm = 0.6 m

Let magnitude of the electrostatic force on the +32 µC charge due to the + 20 µC charge = F₁ (i.e force on q₁ due to q₂)

F_{2} = \frac{kq_{1}q_{2}  }{x_{2}^2 }

F_{2} = \frac{9 * 10^{9}  * 32 * 10^{-6}  * 20 * 10^{-6} }{0.4^2 }\\F_{2} = 36 N

Let magnitude of the electrostatic force on the +32 µC charge due to the -60 µC charge = F₂ (i.e force on q₁ due to q₃)

F_{3} = \frac{kq_{1}q_{3}  }{x_{3}^2 }

F_{3} = -\frac{9 * 10^{9}  * 32 * 10^{-6}  * 60 * 10^{-6} }{0.6^2 }\\F_{3} =-48 N

The electrostatic force on the 32 µC charge, F_{net} = |F_{2} + F_{3}|

F_{net} =| 36 + (-48)| \\F_{net} =|- 12 N| \\ F_{net} = 12 N

You might be interested in
How does the sun transfer energy to Earth?
aleksley [76]

Answer:

By electromagnetic waves.

Explanation:

The sun transfers heat to earth via electromagnetic waves  in twomajor  ways:

Radiation- this is the transfer of energy by invisible electromagnetic ways.

Convection-The radiant sun energy warms the atmosphere and becomes heat energy. This transfer of heat through movement of fluids or usually air is called convection.

4 0
2 years ago
Read 2 more answers
A.Whale communication. Blue whales apparently communicate with each other using sound of frequency 17.0 Hz, which can be heard n
Y_Kistochka [10]

A. 90.1 m

The wavelength of a wave is given by:

\lambda=\frac{v}{f}

where

v is the speed of the wave

f is its frequency

For the sound emitted by the whale, v = 1531 m/s and f = 17.0 Hz, so the wavelength is

\lambda=\frac{1531 m/s}{17.0 Hz}=90.1 m

B. 102 kHz

We can re-arrange the same equation used previously to solve for the frequency, f:

f=\frac{v}{\lambda}

where for the dolphin:

v = 1531 m/s is the wave speed

\lambda=1.50 cm=0.015 m is the wavelength

Substituting into the equation,

f=\frac{1531 m/s}{0.015 m}=1.02 \cdot 10^5 Hz=102 kHz

C. 13.6 m

Again, the wavelength is given by:

\lambda=\frac{v}{f}

where

v = 340 m/s is the speed of sound in air

f = 25.0 Hz is the frequency of the whistle

Substituting into the equation,

\lambda=\frac{340 m/s}{25.0 Hz}=13.6 m

D. 4.4-8.7 m

Using again the same formula, and using again the speed of sound in air (v=340 m/s), we have:

- Wavelength corresponding to the minimum frequency (f=39.0 Hz):

\lambda=\frac{340 m/s}{39.0 Hz}=8.7 m

- Wavelength corresponding to the maximum frequency (f=78.0 Hz):

\lambda=\frac{340 m/s}{78.0 Hz}=4.4 m

So the range of wavelength is 4.4-8.7 m.

E. 6.2 MHz

In order to have a sharp image, the wavelength of the ultrasound must be 1/4 of the size of the tumor, so

\lambda=\frac{1}{4}(1.00 mm)=0.25 mm=2.5\cdot 10^{-4} m

And since the speed of the sound wave is

v = 1550 m/s

The frequency will be

f=\frac{v}{\lambda}=\frac{1550 m/s}{2.5\cdot 10^{-4} m}=6.2\cdot 10^6 Hz=6.2 MHz

3 0
1 year ago
A rock is rolling down a hill. At position 1, it’s velocity is 2.0 m/s. Twelve seconds later, as it passes position 2, it’s velo
mr Goodwill [35]

Answer

Hi,

correct answer is {D} 3.5 m/s²

Explanation

Acceleration is the rate of change of velocity with time. Acceleration can occur when a moving body is speeding up, slowing down or changing direction.

Acceleration is calculated by the equation =change in velocity/change in time

a= {velocity final-velocity initial}/(change in time)

a=v-u/Δt

The units for acceleration is meters per second square m/s²

In this example, initial velocity =2.0m/s⇒u

Final velocity=44.0m/s⇒v

Time taken for change in velocity=12 s⇒Δt

a= (44-2)/12  = 42/12

3.5 m/s²

Best Wishes!

5 0
1 year ago
A nonuniform, 80.0-g, meterstick balances when the support is placed at the 51.0-cm mark. At what location on the meterstick sho
Gnoma [55]

Answer:34 cm

Explanation:

Given

mass of meter stick m=80 gm

stick is balanced when support is placed at 51 cm mark

Let us take 5 gm tack is placed at x cm on meter stick so that balancing occurs at x=50 cm mark

balancing torque

80\times 10^{-3}(51-50)=5\times 10^{-3}(50-x)

80=5(50-x)

80=250-5x

5x=170

x=\frac{170}{5}

x=34 cm

4 0
1 year ago
There is a distinction between average speed and the magnitude of average velocity. Give an example that illustrates the differe
Usimov [2.4K]

An example that illustrates the difference is the circular motion

Explanation:

Let's start by reminding the definition of the two quantities:

- Speed is a scalar quantity that tells "how fast" an object is moving, regardless of its direction of motion.

Speed can be  calculate as:

speed = \frac{d}{t}

where:

d is the distance travelled

t is the time taken

- Velocity is instead a vector quantity, given by:

velocity = \frac{d}{t}

where;

d is the displacement of the object (displacement is a a vector connecting the initial position to the final position of motion)

t is the time taken

Since it is a vector, velocity has both a magnitude and a direction, therefore it also takes into account the direction of motion of the object.

For an object in motion in a straight line, speed and velocity are the same. However, this is not always the case.

In fact, an example of motion in which the two quantities are different is the circular motion. Consider for example the object making one complete revolution along the circle. Therefore, its average speed is the ratio between the length of the perimeter (the distance) divided by the time taken:

speed = \frac{2\pi r}{t}

where r is the radius of the circle.

However, the displacement of the object is zero (because the object returns to the starting point), and so the average velocity is also zero:

velocity = \frac{0}{t}=0

Learn more about speed and velocity:

brainly.com/question/8893949

brainly.com/question/5063905

brainly.com/question/5248528

#LearnwithBrainly

5 0
2 years ago
Other questions:
  • A roller coaster travels 200 feet horizontally and then rises 135 feet at an angle of 30 degrees above the ground. What is the m
    7·1 answer
  • What is the unresolved problem that is facing scientists on the island of Guam?
    7·1 answer
  • Why is platinum used sparingly in technological applications?
    12·1 answer
  • Image that the radiation emitted by the nitrogen at a frequency of 8.88×1014 Hz is absorbed by an electron in a molecule of meth
    9·2 answers
  • A very long, straight wire has charge per unit length 3.50×10^−10 C/m . At what distance from the wire is the electricfield magn
    11·1 answer
  • In the Bohr model of the hydrogen atom, the electron moves in a circular orbit of radius 5.3×10−11m with a speed of 2.2×106m/s.
    15·1 answer
  • The dwarf planet praamzius is estimated to have a diameter of about 300km and orbits the sun at a distance of 6.4E12m . What is
    8·1 answer
  • The natural direction of heat flow between two reservoirs depends on ....​
    11·1 answer
  • A child of mass m is at the edge of a merry-go-round of diameter d. When the merry-go-round is rotating with angular acceleratio
    15·1 answer
  • A substance occupies one half of an open container. The atoms of the substance are closely packed but are still able to slide pa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!