answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
insens350 [35]
2 years ago
7

A block is suspended from a scale and then lowered into a bucket of water. The density of the water is 1 gm/cm3. The initial rea

ding on the scale is 19N and one complete revolution of the scale is a change of 10N. 1) When the block is lowered into the water, the mass of the block:
Physics
1 answer:
miv72 [106K]2 years ago
6 0

Answer:

1.94 kg

Explanation:

we have given density of water = 1 gm/cm^3

the initial reading of the scale = 19 N

change in reading of scale =10 N

we have to find the mass of the block when the block is lowered in water

mass of the block when it is lowered in the water is given by

w_b=\frac{f}{g}

here g is the gravity of acceleration which value is given by 9.8 m/sec^2

so the mass of the block =\frac{19}{9.8}=1.94\ kg

You might be interested in
Lilli suggests that they explore the simulation starting with varying only a single parameter in order to understand the role of
mrs_skeptik [129]

Answer:

B.

Explanation:

One of the ways to address this issue is through the options given by the statement. The concepts related to the continuity equation and the Bernoulli equation.

Through these two equations it is possible to observe the behavior of the fluid, specifically the velocity at a constant height.

By definition the equation of continuity is,

A_1V_1=A_2V_2

In the problem A_2 is 2A_1, then

A_1V_1=2A_1V_2

V_2 = \frac{V_1}{2}

<em>Here we can conclude that by means of the continuity when increasing the Area, a decrease will be obtained - in the diminished times in the area - in the speed.</em>

For the particular case of Bernoulli we have to

P_1 + \frac{1}{2}\rho V_1^2 = P_2 +\frac{1}{2}\rho V_2^2

P_2-P_1 = \frac{1}{2} \rho (V_1^2-V_2^2)

For the previous definition we can now replace,

P_2-P_1 = \frac{1}{2} \rho (V_1^2-(\frac{V_1}{2})^2)

\Delta P =  \frac{3}{8} \rho V_1^2

<em>Expressed from Bernoulli's equation we can identify that the greater the change that exists in pressure, fluid velocity will tend to decrease</em>

The correct answer is B: "If we increase A2 then by the continuity equation the speed of the fluid should decrease. Bernoulli's equation then shows that if the velocity of the fluid decreases (at constant height conditions) then the pressure of the fluid should increase"

4 0
2 years ago
At what condition does a body become weightless at equator
salantis [7]
Hope this is helpful <span>Weightlessness

</span>
3 0
2 years ago
29. 2072 Set C Q.No. 10c
Annette [7]

Answer:

90.2^{\circ}C

Explanation:

Considering the thermal conductivity of aluminium and brass as k_{al}=205 W/mK and k_{br}=109 W/mk respectively  

The temperature at the end of aluminium and brass are given as T_{al}=150^{\circ}C and T_{br}=20^{\circ}C respectively with length of rod L=1.3 m , Length of aluminium L_{al}=0.8 m, length of brass L_{br}=0.5 m and letting temperature at steady state be T

At steady state, thermal conductivity of both aluminium and brass are same hence

H_{br}=H_{al}

k_{al}A\frac {T_H-T}{L_{al}}= k_{br}A\frac {T-T_H}{L_{br}}

Upon re-arranging

T=\frac {k_{al}L_{al}T_{br}+k_{al}L_{br}T_{al}}{k_{br}L_{al}+k_{al}L_{br}}

(205)\frac {150-T}{0.8}=109\frac {T-20}{0.5}

T=\frac {(109*0.8*20)+(205*0.5*150)}{(109*0.8)+(205*0.5)}

T=90.2^{\circ}C

Therefore, the temperatures at which the metals are joined is 90.2^{\circ}C

6 0
2 years ago
How many calories are equal to one BTU? (One calorie = 4.186 J, one BTU = 1 054 J.)
I am Lyosha [343]
<h2>Option C is the correct answer.</h2>

Explanation:

We need to find how many calories is 1 BTU.

Given

          1 BTU = 1054 J

          1 calorie = 4.186 J

So we have

          1 BTU = 4.186 x 251.79 J

          1 BTU =251.79 calorie

          1 BTU = 252 calorie.

Option C is the correct answer.

3 0
2 years ago
In an elastic head-on collision, a 0.60 kg cart moving at 5.0 m/s [W] collides with a 0.80 kg cart moving at 2.0 m/s [E]. The co
labwork [276]

Answer:

The answer is given below

Explanation:

u is the initial velocity, v is the final velocity. Given that:

m_1=0.6kg,u_1=-5m/s(moving \ west),m_2=0.8kg,u_2=2m/s,k=1200N/m

a)

The final velocity of cart 1 after collision is given as:

v_1=(\frac{m_1-m_2}{m_1+m_2})u_1+\frac{2m_2}{m_1+m_2}u_2\\  Substituting:\\v_1=\frac{0.6-0.8}{0.6+0.8} (-5)+\frac{2*0.8}{0.6+0.8}(2)= 5/7+16/7=3\ m/s

The final velocity of cart 2 after collision is given as:

v_2=(\frac{m_2-m_1}{m_1+m_2})u_2+\frac{2m_1}{m_1+m_2}u_1\\  Substituting:\\v_1=\frac{0.8-0.6}{0.6+0.8} (2)+\frac{2*0.6}{0.6+0.8}(-5)= 2/7-30/7=-4\ m/s

b) Using the law of conservation of energy:

\frac{1}{2}m_1u_1+ \frac{1}{2}m_2u_2=\frac{1}{2}m_1v_1+\frac{1}{2}m_2v_2+\frac{1}{2}kx^2\\x=\sqrt{\frac{m_1u_1+m_2u_2-m_1v_1-m_2v_2}{k}}\\ Substituting\ gives:\\x=\sqrt{\frac{0.6*(-5)^2+0.8*2^2-(0.6*3^2)-(0.8*(-4)^2)}{1200}}=\sqrt{0}=0\ cm

7 0
2 years ago
Other questions:
  • Pwcs are very responsive to slight turns of the steering control. as a result, what dangerous situation can occur when a quick t
    12·1 answer
  • Two objects are placed in thermal contact and are allowed to come to equilibrium in isolation. the heat capacity of object a is
    7·1 answer
  • in physics lab, a cube slides down a frictionless incline as shown in the figure below, and elastically strikes another cube at
    12·1 answer
  • A 3.00-kg model airplane has velocity components of 5.00 m/s due east and 8.00 m/s due north. What is the plane’s kinetic energy
    15·2 answers
  • Select the volume units that are greater than one liter.
    11·2 answers
  • In this lab, you will use a dynamics track to generate collisions between two carts. If momentum is conserved, what variable cha
    5·2 answers
  • A novice pilot sets a plane’s controls, thinking the plane will fly at 2.50 × 102 km/h to the north. if the wind blows at 75 km/
    15·1 answer
  • A steel rod with a length of l = 1.55 m and a cross section of A = 4.45 cm2 is held fixed at the end points of the rod. What is
    6·1 answer
  • If a freely suspended vertical spring is pulled in downward direction and then released, which type of wave is produced in the s
    9·2 answers
  • Think of something from everyday life that follows a two-dimensional path. It could be a kicked football, a bus that's turning a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!