answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
2 years ago
15

A very long wire carries a uniform linear charge density of 5 nC/m. What is the electric field strength 13 m from the center of

the wire at a point on the wire's perpendicular bisector? (ε 0 = 8.85 × 10-12 C2/N · m2)
Physics
1 answer:
kipiarov [429]2 years ago
5 0

Answer:

E=6.91 N/C

Explanation:

Given that

Linear Charge density ,λ = 5 nC/m

Distance ,R= 13 m

We know that formula for long wire to find electric field

E=\dfrac{\lambda }{2\pi \varepsilon _0R}

E=Electric field

R=Distance

εo=8.85 x 10⁻¹² C²/N.m²

λ=Linear Charge density

Now by putting the values

E=\dfrac{5\times 10^{-9}}{{2\times \pi \times 8.85\times 10^{-12}\times 13}}

E=6.91 N/C

Therefore the electric filed at distance 13 m will be 6.91 N/C

You might be interested in
It took a squirrel 0.50\,\text s0.50s0, point, 50, start text, s, end text to run 5.0\,\text m5.0m5, point, 0, start text, m, en
STALIN [3.7K]

Answer:

-5.0m/s

Explanation:

3 0
2 years ago
Read 2 more answers
5. A nail contains trillions of electrons. Given that electrons repel from each other, why do they not then fly out of the nail?
diamong [38]

Answer:

Nails are made of iron. Iron consists of 26 protons and 26 electrons. protons are positively charged and electrons are negatively charged, so this force of attraction keeps the electrons together.

If electrons repel from each other, the positively charge protons and nucleus allow them to move in a definite orbit and prevent them flying out of the nail.

4 0
1 year ago
A dinner plate falls vertically to the floor and breaks up into three pieces, which slide horizontally along the floor. immediat
koban [17]
<span>We'll use the momentum-impulse theorem. The x-component of the total momentum in that direction is given by p_(f) = p_(1) + p_(2) + p_(3) = 0.
  So p_(1x) = m1v1 = 0.2 * 2 = 0.4 Also p_(2x) = m2v2 = 0 and p_(3x) = m3v3 = 0.1 *v3 where v3 is unknown speed and m3 is the mass of the third particle with the unknown speed
 Similarly, the 235g particle, y-component of the total momentum in that direction is given by p_(fy) = p_(1y) + p_(2y) + p_(3y) = 0.
 So p_(1y) = 0, p_(2y) = m2v2 = 0.235 * 1.5 = 0.3525 and p_(3y) = m3v3 = 0.1 * v3 where m3 is third particle mass.
  So p_(fx) = p_(1x) + p_(2x) + p_(3x) = 0.4 + 0.1v3; v3 = 0.4/-0.1 = - 4
 Also p_(fy) = 0.3525 + 0.1v3; v3 = - 0.3525/0.1 = -3.525
  So v_3x = -4 and v_3y = 3.525.
 The speed is their resultant = âš (-4)^2 + (-3.525)^2 = 5.335</span>
4 0
1 year ago
Read 2 more answers
According to Newton’s law of universal gravitation, which statements are true?
Arte-miy333 [17]

Answer: The statement first and the fourth statement are true.

Explanation:

According to Newton's gravitational law, every particle in the universe attracts every other particle with the force of attraction between the masses is directly proportional to the product of the masses and inversely proportional to the square of the distance between them.

As we move to higher altitude, the force of gravity on use decreases because the force of gravity is inversely proportional to the distance.

If the masses of the two objects are more then there will be greater force of gravity between them.

Therefore, the statement first and the fourth statement are true.

7 0
1 year ago
Read 2 more answers
A biophysics experiment uses a very sensitive magnetic field probe to determine the current associated with a nerve impulse trav
fenix001 [56]

Answer:

The peak current carried by the axon is 5.85 x 10⁻⁸ A

Explanation:

Given;

distance of the field from the axon, r = 1.3 mm

peak magnetic field strength, B = 9 x 10⁻¹² T

To determine the peak current carried by the axon, apply the following equation;

B = \frac{\mu I}{2\pi r}

where;

B is the peak magnetic field

r is the distance of the magnetic field from axon

μ is permeability of free space = 4π x 10⁻⁷

I is the peak current

Re-arrange the equation and solve for "I"

B = \frac{\mu I}{2\pi r} \\\\I = \frac{B*2\pi r}{\mu} \\\\I = \frac{9*10^{-12}*2*\pi *1.3*10^{-3}}{4\pi *10^{-7}} \\\\I = 5.85 *10^{-8} \ A

Therefore, the peak current carried by the axon is 5.85 x 10⁻⁸ A

7 0
1 year ago
Other questions:
  • At 1 atm pressure, the heat of sublimation of gallium is 277 kj/mol and the heat of vaporization is 271 kj/mol. to the correct n
    13·1 answer
  • A train travels a distance of 1,2 km between two stations with an average velocity of 43.2 km/h. During it's motion, at the time
    10·1 answer
  • What’s the force of a pitching machine on a baseball?
    5·2 answers
  • A typical meteor that hits the earth's upper atmosphere has a mass of only 2.5 g, about the same as a penny, but it is moving at
    15·1 answer
  • A 15-g bullet moving at 300 m/s passes through a 2.0 cm thick sheet of foam plastic and emerges with a speed of 90 m/s. Let's as
    14·1 answer
  • A box of books with mass 58 kg rests on the level floor of the campus bookstore. The floor is freshly waxed and has negligible f
    6·1 answer
  • A gold wire that is 1.8 mm in diameter and 15 cm long carries a current of 260 mA. How many electrons per second pass a given cr
    14·1 answer
  • In a diffraction grating experiment, light of 600 nm wavelength produces a first-order maximum 0.350 mm from the central maximum
    7·2 answers
  • Which shows the correct lens equation? The inverse of f equals the inverse of d Subscript o Baseline times the inverse of d Subs
    16·2 answers
  • A graph titled Distance as a Function of Time with horizontal axis time (seconds) and vertical axis distance (meters). A straigh
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!