Answer:
Velocity of Afrom B=21m/s
Acceleration of A from B=1.68m/s°2
Explanation:
Given
Radius r=150m
Velocity of a Va= 54km/hr
Va=54*1000/3600=15m/s
Velocity of b Vb=82km/hr
VB=81*1000/3600=22.5mls
The velocity of Car A as observed from B is VBA
VB= VA+VBA
Resolving the vector into X and Y components
For X component= 15cos60=7.5m/s
Y component=22 5sin60=19.48m/s
VBA= √(X^2+Y^2)
VBA= ✓(7.5^2+19.48^2)=21m/s
For acceleration of A observed from B
A=VA^2/r= 15^2/150=1.5m/s
Resolving into Xcomponent=1.5cos60=0.75m/s
Y component=3cos60=1.5
Acceleration BA=√(0.75^2+1.5^2)
1.68m/s
Answer: 15.8
Explanation:
You are given that the
Object distance U = 32 cm
Focal length F = 30.1 cm
First calculate the image distance V by using the formula
1/F = 1/U + 1/V
Substitute F and V into the formula
1/30.1 = 1/32 + 1/V
1/V = 1/30.1 - 1/32
1/V = 0.00197259
Reciprocate both sides
V = 506.94 cm
Magnification M is the ratio of image distance to object distance.
M = V/U
substitute the values of V and U into the formula
M = 506.94/32
M = 15.8
Therefore, the magnification of the image is 15.8 or approximately 16.
Answer:
the function varies linearly with the radius of the disk, so the smallest period is zero for a radius of zero centimeters
Explanation:
This system performs a simple harmonic movement where the angular velocity is given by
w = √ k / I
Where k is the constant recovered from the axis of rotation and I is the moment of inertia of the disk
The expression for the moment of inertia is
I = 1/2 m r²
Angular velocity, frequency and period are related
w = 2π f = 2π / T
Substituting
2π / T = √ k / I
T = 2π √ I / k
T = 2π √ (½ m r² / k)
T = (2π √m / 2k) r
We can see that the function varies linearly with the radius of the disk, so the smallest period is zero for a radius of zero centimeters
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer:
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Explanation:
Hi there!
The equations of height and velocity of the ball are the following:
y = y0 + v0 · t + 1/2 · g · t²
v = v0 + g · t
Where:
y = height at time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.81 m/s² considering the upward direction as positive).
v = velocity of the ball at time t.
Placing the origin at the throwing point, y0 = 0.
Let´s use the equation of velocity to obtain the time at which the velocity is 12.0 m/s / 2 = 6.00 m/s.
v = v0 + g · t
6.00 m/s = 12.0 m/s -9.81 m/s² · t
(6.00 - 12.0)m/s / -9.81 m/s² = t
t = 0.612 s
Now, let´s calculate the height of the baseball at that time:
y = y0 + v0 · t + 1/2 · g · t² (y0 = 0)
y = 12.0 m/s · 0.612 s - 1/2 · 9.81 m/s² · (0.612 s)²
y = 5.51 m
The ball will have an upward velocity of 6 m/s at a height of 5.51 m.
Have a nice day!