Part a)
As we know that

here we know that
P1 = 20 bar
V1 = 0.5 m^3
V2 = 2.75 m^3
from above equation


so final state pressure will be 2 bar
Part b)
now in order to find the work done





Answer:
The torque on the child is now the same, τ.
Explanation:
- It can be showed that the external torque applied by a net force on a rigid body, is equal to the product of the moment of inertia of the body with respect to the axis of rotation, times the angular acceleration.
- In this case, as the movement of the child doesn't create an external torque, the torque must remain the same.
- The moment of inertia is the sum of the moment of inertia of the merry-go-round (the same that for a solid disk) plus the product of the mass of the child times the square of the distance to the center.
- When the child is standing at the edge of the merry-go-round, the moment of inertia is as follows:

- When the child moves to a position half way between the center and the edge of the merry-go-round, the moment of inertia of the child decreases, as the distance to the center is less than before, as follows:

- Since the angular acceleration increases from α to 2*α, we can write the torque expression as follows:
τ = 3/4*m*r² * (2α) = 3/2*m*r²
same result than in (2), so the torque remains the same.
Answer:
66.98 db
Explanation:
We know that

L_T= Total signal level in db
n= number of sources
L_S= signal level from signal source.

= 66.98 db
Okay, haven't done physics in years, let's see if I remember this.
So Coulomb's Law states that

so if we double the charge on

and double the distance to

we plug these into the equation to find
<span>

</span>
So we see the new force is exactly 1/2 of the old force so your answer should be

if I can remember my physics correctly.