answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrrafil [7]
2 years ago
12

A sample of gold has a volume of 2 cm3 and a mass of 38.6 grams. What would be the density, and three other properties of the sa

mple that would be considered physical properties.
Physics
1 answer:
lukranit [14]2 years ago
3 0

The density of the gold is calculated to be "19,300 kg/m³".

<u>Explanation:</u>

Given:

Volume = 2cm³

Mass = 38.6 grams.

To Find:

Density of the gold = ?

Solution:

Density is obtained by dividing mass of the sample by its volume and it is given in the units of kg/m³.

Mass in grams is converted into kg as,

1 g = 0.001 kg

38. 6 g = \frac{38.6}{1000} = 0.0386 kg

Now we have to convert cm³ to m³ as,

1 cm³ = 10⁻⁶ m³

2 cm³ = 2 × 10⁻⁶ m³

So Density = \frac{0.0386 k g}{2 \times 10^{-6} m^{3}}=19,300 \mathrm{kg} / \mathrm{m}^{3}

Physical properties of Gold:

  • Gold is a heavy metal.
  • It is Malleable and ductile.
  • It is a corrosion resistant element.
You might be interested in
Two wires are stretched between two fixed supports and have the same length. One wire A there is a second-harmonic standing wave
lina2011 [118]

(a) Greater

The frequency of the nth-harmonic on a string is an integer multiple of the fundamental frequency, f_1:

f_n = n f_1

So we have:

- On wire A, the second-harmonic has frequency of f_2 = 660 Hz, so the fundamental frequency is:

f_1 = \frac{f_2}{2}=\frac{660 Hz}{2}=330 Hz

- On wire B, the third-harmonic has frequency of f_3 = 660 Hz, so the fundamental frequency is

f_1 = \frac{f_3}{3}=\frac{660 Hz}{3}=220 Hz

So, the fundamental frequency of wire A is greater than the fundamental frequency of wire B.

(b) f_1 = \frac{v}{2L}

For standing waves on a string, the fundamental frequency is given by the formula:

f_1 = \frac{v}{2L}

where

v is the speed at which the waves travel back and forth on the wire

L is the length of the string

(c) Greater speed on wire A

We can solve the formula of the fundamental frequency for v, the speed of the wave:

v=2Lf_1

We know that the two wires have same length L. For wire A, f_1 = 330 Hz, while for wave B, f_B = 220 Hz, so we can write the ratio between the speeds of the waves in the two wires:

\frac{v_A}{v_B}=\frac{2L(330 Hz)}{2L(220 Hz)}=\frac{3}{2}

So, the waves travel faster on wire A.

7 0
1 year ago
José is pinned against the walls of the Rotor, a ride with a radius of 3.00 meters that spins so fast that the floor can be remo
zaharov [31]

r = radius of the circle of the ride = 3.00 meters

v = linear speed of the person during the ride = 17.0 m/s

m = mass of the person in angular motion in the ride

L = angular momentum of the person in the ride = 3570 kg m²/s

Angular momentum is given as

L = m v r

inserting the values

3570 kg m²/s = m (17 m/s) (3.00 m)

m = 3570 kg m²/s/(51 m²/s)

m = 7 kg

hence the mass comes out to be 7 kg


8 0
1 year ago
1. A 9.4×1021 kg moon orbits a distant planet in a circular orbit of radius 1.5×108 m. It experiences a 1.1×1019 N gravitational
sattari [20]

Answer:

26 days

Explanation:

m = 9.4×1021 kg

r= 1.5×108 m

F = 1.1×10^ 19 N

We know Fc = \frac{m v^{2} }{r}

==> 1.1 × 10^{19} = (9.4 × 10^{21} × v^{2} ) ÷ 1.5 × 10^{8}

==> 1.1 × 10^{19} = v^{2} × 6.26×10^{13}

==> v^{2} =  1.1 × 10^{19} ÷ 6.26×10^{13}

==> v^{2} = 0.17571885 × 10^{6}

==> v= 0.419188323 × 10^{3} m/sec

==> v= 419.188322834 m/s

Putting value of r and v from above in ;

T= 2πr ÷ v

==> T= 2×3.14×1.5×10^{8} ÷ 0.419188323 × 10^{3}

==> T = 22.472× 100000 = 2247200 sec

but

86400 sec = 1 day

==> 2247200 sec= 2247200 ÷ 86400 = 26 days

3 0
1 year ago
Read 2 more answers
If a ball was thrown upward at 46.3 m/s how long would the ball stay in the air
galben [10]
V = Vo + a.t&#10;&#10;

The ball is against the vector of gravity. Then, the gravity will be negative.

0 = 46,3  + (-9.8).t \\ &#10;t =   \frac{46.3}{9.8}  \\ &#10;t \approx 4.72 &#10;&#10;

The ball will stop in the air after approx. 4.72 seconds. And will take the same time to hit the ground.

It will stay approx. 9.44 seconds in the air.
8 0
1 year ago
Consider a spring that does not obey Hooke’s law very faithfully. One end of the spring is fixed. To keep the spring stretched o
IRINA_888 [86]

Answer:

a) W=-0.0103125\ J

b) W=0.0059375\ J

c) Compressing is easier

Explanation:

Given:

Expression of force:

F=kx-bx^2+cx^3

where:

k=100\ N.m^{-1}

b=700\ N.m^{-2}

c=12000\ N.m^{-3}

x when the spring is stretched

x when the spring is compressed

hence,

F=100x-700x^2+12000x^3

a)

From the work energy equivalence the work done is equal to the spring potential energy:

here the spring is stretched so, x=-0.05\ m

Now,

The spring constant at this instant:

j=\frac{F}{x}

j=\frac{100\times (-0.05)-700\times (-0.05)^2+12000\times (-0.05)^3}{-0.05}

j=-8.25\ N.m^{-1}

Now work done:

W=\frac{1}{2} j.x^2

W=0.5\times -8.25\times (-0.05)^2

W=-0.0103125\ J

b)

When compressing the spring by 0.05 m

we have, x=0.05\ m

<u>The spring constant at this instant:</u>

j=\frac{F}{x}

j=\frac{100\times (0.05)-700\times (0.05)^2+12000\times (0.05)^3}{0.05}

j=4.75\ N.m^{-1}

Now work done:

W=\frac{1}{2} j.x^2

W=0.5\times 4.75\times (0.05)^2

W=0.0059375\ J

c)

Since the work done in case of stretching the spring is greater in magnitude than the work done in compressing the spring through the same deflection. So, the compression of the spring is easier than its stretching.

8 0
1 year ago
Other questions:
  • Which statement best describes the term absolute threshold?
    15·1 answer
  • a 160 kilogram space vehicle is traveling along a straight line at a constant speed of 800 meters per second. The magnitude of t
    9·1 answer
  • PLZ HELP THE CORRECT ANSWER GETS BRAINLEAST!
    9·1 answer
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    14·1 answer
  • A vibrating standing wave on a string radiates a sound wave with intensity proportional to the square of the standing-wave ampli
    15·1 answer
  • Two small aluminum spheres, each of mass 0.0250 kilograms, areseparated by 80.0 centimeters.
    7·1 answer
  • A uniformly accelerated car passes three equally spaced traffic signs. The signs are separated by a distance d = 25 m. The car p
    8·1 answer
  • To eight significant figures, Avogadro's constant is 6.0221367×10^(23)mol−1. Which of the following choices demonstrates correct
    11·1 answer
  • A ping-pong ball weighs 0.025 N. The ball is placed inside a cup that sits on top of a vertical spring. If the spring is compres
    6·1 answer
  • I pull the throttle in my racing plane at a = 12.0 m/s2. I was originally flying at v = 100. m/s. Where am I when t = 2.0s, t =
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!