answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sammy [17]
1 year ago
15

A vibrating standing wave on a string radiates a sound wave with intensity proportional to the square of the standing-wave ampli

tude. When a piano key is struck and held down, so that the string continues to vibrate, the sound level decreases by 9.0 dB in 1.0 s. What is the string's damping time constant τ ?
Physics
1 answer:
uysha [10]1 year ago
8 0

Answer:

string's damping is 1.03676

Explanation:

given data

sound level = 9.0 dB

time = 1 sec

to find out

string's damping

solution

we will apply here formula for string damping (b) that is

A(t) = A × e^{-bt}   ...................1

we know here I  ∝ A² so

√I(t) = √I × e^{-bt}  

√I(t) / √I =  e^{-bt}     .....................2

we know sound level decreases 9 dB i.e ΔdB = 9

so we can write

ΔdB = 10 log ( I(t) / I)

9 = 10 log ( I(t) / I)

I(t) / I = 10^{-0.9}

I(t) / I = 0.1258

and

√I(t) / I) = √0.1258 = 0.3546     .......................3

from equation 2 and 3 we get

0.3546 = e^{-bt}

take ln both side

-bt = ln 0.3546

here we know t is 1 sec

so

- b = - 1.03676

b = 1.03676

so here string's damping is 1.03676

You might be interested in
A pendulum is used in a large clock. The pendulum has a mass of 2kg. If the pendulum is moving at a speed of 2.9 m/s when it rea
Vanyuwa [196]
You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight

3 0
1 year ago
Read 2 more answers
Waves hitting at an angle and then bending around features of the coast is known as
Pavel [41]
<span>Waves hitting at an angle and then bending around features of the coast is known as Wave refraction
When waves hitting a specific angle, some part of the waves will be closer to the shallow part of the water and some part will be closer to the deeper part of the water, which makes the wave became somehow bent around the shore.</span>
6 0
2 years ago
To a stationary observer, a man jogs east at 2.5 m/s and a woman jogs west at 1.5 m/s. from the woman's frame of reference, what
neonofarm [45]
T o a stationary observer, a man jogs east at 2.5 m/s and a woman jogs west at 1.5 m/s. from the woman's frame of reference, what is the man's velocity? it is 4m/s east
5 0
2 years ago
Read 2 more answers
A penny is placed on a rotating turntable. Where on the turntable does the penny require the largest centripetal force to remain
Artyom0805 [142]

Answer:

m = mass of the penny

r = distance of the penny from the center of the turntable or axis of rotation

w = angular speed of rotation of turntable

F = centripetal force experienced by the penny

centripetal force "F" experienced by the penny of "m" at distance "r" from axis of rotation is given as

F = m r w²

in the above equation , mass of penny "m"  and angular speed "w" of the turntable is same at all places. hence the centripetal force directly depends on the radius .

hence greater the distance from center , greater will be the centripetal force to remain in place.  

So at the edge of the turntable , the penny experiences largest centripetal force to remain in place.

Explanation:

5 0
2 years ago
A disk is spinning about its center with a constant angular speed at first. Let the turntable spin faster and faster, with const
hoa [83]

Answer:

4 (please see the attached file)

Explanation:

While the angular speed (counterclockwise) remained constant, the angular acceleration was just zero.

So, the only force acting on the bug (parallel to the surface) was the centripetal force, producing a centripetal acceleration directed towards the center of the disk.

When the turntable started to spin faster and faster, this caused a change in the angular speed, represented by the appearance of an angular acceleration α.

This acceleration is related with the tangential acceleration, by this expression:

at = α*r

This acceleration, tangent to the disk (aiming in the same direction of the movement, which is counterclockwise, as showed in the pictures) adds vectorially with the centripetal force, giving a resultant like the one showed in the sketch Nº 4.

7 0
1 year ago
Other questions:
  • A leaky faucet drips 40 times in 30.0 s. what is the frequency of the dripping?
    13·1 answer
  • Which planet is approximately 20 times farther from the sun than earth is answer\?
    7·1 answer
  • A uniform metal bar is 5.00 m long and has mass 0.300 kg. The bar is pivoted on a narrow support that is 2.00 m from the left-ha
    8·1 answer
  • A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the
    5·2 answers
  • Cell phone conversations are transmitted by high-frequency radio waves. Suppose the signal has wavelength 36.5 cm while travelin
    9·1 answer
  • A simple pendulum consists of a point mass suspended by a weightless, rigid wire in a uniform gravitation field. Which of the fo
    10·1 answer
  • __________ curves help lessen the effect of the force of the forward motion on your vehicle as it enters the curve.
    12·1 answer
  • A simple pendulum 0.64m long has a period of 1.2seconds. Calculate the period of a similar pendulum 0.36m long in the same locat
    8·1 answer
  • A certain resistor dissipates 0.5 W when connected to a 3 V potential difference. When connected to a 1 V potential difference,
    5·1 answer
  • A certain force gives object m1 an acceleration of 12.0 m/s2. The same force gives object m2 an acceleration of 3.30 m/s2. What
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!