Answer:
V_infinty=98.772 m/s
Explanation:
complete question is:
The following problem assume an inviscid, incompressible flow. Also, standard sea level density and pressure are 1.23kg/m3(0.002377slug/ft3) and 1.01imes105N/m2(2116lb/ft2), respectively. A Pitot tube on an airplane flying at standard sea level reads 1.07imes105N/m2. What is the velocity of the airplane?
<u>solution:</u>
<u>given:</u>
<em>p_o=1.07*10^5 N/m^2</em>
<em>ρ_infinity=1.23 kg/m^2</em>
<em>p_infinity=1.01*10^5 N/m^2</em>
p_o=p_infinity+(1/2)*(ρ_infinity)*V_infinty^2
V_infinty^2=9756.097
V_infinty=98.772 m/s
Charges build up when you have dry air and friction ,the heat to clothes which dry it out and causes friction.
Hot combustion gases are accelerated in a 92% efficient
adiabatic nozzle from low velocity to a specified velocity. The exit velocity
and the exit temp are to be determined.
Given:
T1 = 1020 K à
h1 = 1068.89 kJ/kg, Pr1 = 123.4
P1 = 260 kPa
T1 = 747 degrees Celsius
V1 = 80 m/s ->nN = 92% -> P2
= 85 kPa
Solution:
From the isentropic relation,
Pr2<span> = (P2 / P1)PR1 = (85
kPa / 260 kPa) (123.4) = 40.34 = h2s = 783.92 kJ/kg</span>
There is only one inlet and one exit, and thus, m1 =
m2 = m3. We take the nozzle as the system, which is a
control volume since mass crosses the boundary.
h2a = 1068.89 kJ/kg – (((728.2 m/s)2 –
(80 m/s)2) / 2) (1 kJ/kg / 1000 m2/s2) =
806.95 kJ/kg\
From the air table, we read T2a = 786.3 K
<span>To find the wavelength of a neutron can be calculated by using the formula
Wavelength=h/m x v
Where h is planck's constant
m=mass of neutron
v= velocity of the particle
By substituting the given values
Wavelength= 6.63 × 10–34 j s / 1.675 × 10–27 kg x 2 m/s^-1
Wavelength of a neutron=1.979 x 10^-7 m</span>
Answer:
Explanation:
Question 1:
Mass=1kg
Acceleration due to gravity=9.8m/s^2
Height=10m
on the before falling it has potential energy
Potential energy=mass x acceleration due to gravity x height
Potential energy=1 x 9.8 x 10
Potential energy=98 joules
Question 2:
Potential energy=kinetic energy base base on energy transformation
Kinetic energy=(mass x (velocity)^2)➗2
98=(1 x(velocity))^2 ➗ 2
Cross multiplying
98 x 2=(velocity)^2
196=(velocity)^2
Velocity=√(196)
Velocity=14
Velocity=14m/s