answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
2 years ago
6

A ball was kicked upward at a speed of 64.2 m/s. how fast was the ball going 1.5 seconds later

Physics
1 answer:
UNO [17]2 years ago
7 0

Anything that's not supported and doesn't hit anything, and
doesn't have any air resistance, gains 9.8 m/s of downward
speed every second, on account of gravity.  If it happens to
be moving up, then it loses 9.8 m/s of its upward speed every
second, on account of gravity.

                (64.2 m/s)  -  [ (9.8 m/s² ) x (1.5 sec) ] 

            =  (64.2 m/s)  -       [      14.7 m/s      ]

            =             49.5 m/s  .  (upward)

You might be interested in
Some of the fastest dragsters (called "top fuel) do not race for more than 300-400m for safety reasons. Consider such a dragster
Masja [62]

Answer:

1.10261 times g

416.17506 mph

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

s=ut+\frac{1}{2}at^2\\\Rightarrow 400=0\times 8.6+\frac{1}{2}\times a\times 8.6^2\\\Rightarrow a=\frac{400\times 2}{8.6^2}\\\Rightarrow a=10.81665\ m/s^2

Dividing by g

\dfrac{a}{g}=\dfrac{10.81665}{9.81}\\\Rightarrow \dfrac{a}{g}=1.10261\\\Rightarrow a=1.10261g

The acceleration is 1.10261 times g

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 10.81665\times 1.6\times 10^3+0^2}\\\Rightarrow v=186.04644\ m/s

In mph

186.04644\times \dfrac{3600}{1609.34}=416.17506\ mph

The speed of the dragster is 416.17506 mph

5 0
2 years ago
During a compaction test in the lab a cylindrical mold with a diameter of 4in and a height of 4.58in was filled. The compacted s
Ray Of Light [21]

Answer:

part a : <em>The dry unit weight is 0.0616  </em>lb/in^3<em />

part b : <em>The void ratio is 0.77</em>

part c :  <em>Degree of Saturation is 0.43</em>

part d : <em>Additional water (in lb) needed to achieve 100% saturation in the soil sample is 0.72 lb</em>

Explanation:

Part a

Dry Unit Weight

The dry unit weight is given as

\gamma_{d}=\frac{\gamma}{1+\frac{w}{100}}

Here

  • \gamma_d is the dry unit weight which is to be calculated
  • γ is the bulk unit weight given as

                                              \gamma =weight/Volume \\\gamma= 4 lb / \pi r^2 h\\\gamma= 4 lb / \pi (4/2)^2 \times 4.58\\\gamma= 4 lb / 57.55\\\gamma= 0.069 lb/in^3

  • w is the moisture content in percentage, given as 12%

Substituting values

                                              \gamma_{d}=\frac{\gamma}{1+\frac{w}{100}}\\\gamma_{d}=\frac{0.069}{1+\frac{12}{100}} \\\gamma_{d}=\frac{0.069}{1.12}\\\gamma_{d}=0.0616 lb/in^3

<em>The dry unit weight is 0.0616  </em>lb/in^3<em />

Part b

Void Ratio

The void ratio is given as

                                                e=\frac{G_s \gamma_w}{\gamma_d} -1

Here

  • e is the void ratio which is to be calculated
  • \gamma_d is the dry unit weight which is calculated in part a
  • \gamma_w is the water unit weight which is 62.4 lb/ft^3 or 0.04 lb/in^3
  • G is the specific gravity which is given as 2.72

Substituting values

                                              e=\frac{G_s \gamma_w}{\gamma_d} -1\\e=\frac{2.72 \times 0.04}{0.0616} -1\\e=1.766 -1\\e=0.766

<em>The void ratio is 0.77</em>

Part c

Degree of Saturation

Degree of Saturation is given as

S=\frac{G w}{e}

Here

  • e is the void ratio which is calculated in part b
  • G is the specific gravity which is given as 2.72
  • w is the moisture content in percentage, given as 12% or 0.12 in fraction

Substituting values

                                      S=\frac{G w}{e}\\S=\frac{2.72 \times .12}{0.766}\\S=0.4261

<em>Degree of Saturation is 0.43</em>

Part d

Additional Water needed

For this firstly the zero air unit weight with 100% Saturation is calculated and the value is further manipulated accordingly. Zero air unit weight is given as

\gamma_{zav}=\frac{\gamma_w}{w+\frac{1}{G}}

Here

  • \gamma_{zav} is  the zero air unit weight which is to be calculated
  • \gamma_w is the water unit weight which is 62.4 lb/ft^3 or 0.04 lb/in^3
  • G is the specific gravity which is given as 2.72
  • w is the moisture content in percentage, given as 12% or 0.12 in fraction

                                      \gamma_{zav}=\frac{\gamma_w}{w+\frac{1}{G}}\\\gamma_{zav}=\frac{0.04}{0.12+\frac{1}{2.72}}\\\gamma_{zav}=\frac{0.04}{0.4876}\\\gamma_{zav}=0.08202 lb/in^3\\

Now as the volume is known, the the overall weight is given as

weight=\gamma_{zav} \times V\\weight=0.08202 \times 57.55\\weight=4.72 lb

As weight of initial bulk is already given as 4 lb so additional water required is 0.72 lb.

4 0
2 years ago
A car travels 10 m/s east. Another car travels 10 m/s north. The relative speed of the first car with respect to the second is:
Thepotemich [5.8K]

Answer:

d. less than 20m/s

Explanation:

To the 2nd car, the first car is travelling 10m/s east and 10m/s south. So the total velocity of the first car with respect to the 2nd car is

[tex]\sqrt{10^2 + 10^2} =10\sqrt{2}=14.14m/s

As 14.14m/s is less than 20m/s. d is the correct selection for this question.

3 0
2 years ago
A 10kg rocket is traveling at 80 m/s when the booster engine applies a constant forward force of 60 N for 3.0 seconds. What impu
Lina20 [59]

Answer:

Impulse = 90

Resulting Velocity = 89

Explanation:

Use F * change in time = m * change in velocity.

For the first part of the question, the left side of the equation is the impulse. Plug it in.

60 * (3.0 - 0) = 90.

For the second half. we use all parts of the equation. I'm gonna use vf for the final velocity.

60 * (3.0 - 0) = 10 * (vf - 80). Simplify.

90 = 10vf - 800. Simplify again.

890 = 10vf. Divide to simplify and get the answer.

The resulting velocity is 89.

4 0
1 year ago
A 25.0-meter length of platinum wire with a cross-sectional area of 3.50 × 10^−6 meter^2 has a resistance
Nookie1986 [14]
R= (rou * L) / area
where R is the wire resistance
rou: resistivity of the wire material
L : wire length
A : cross section area of wire
by sub.
0.757= (rou*25)/ 3.5*10^-6
25*rou = 2.6495*10^-6
rou= 1.0598*10^-7 ohm.m
4 0
1 year ago
Other questions:
  • How are adhesion and cohesion similar? how are they different?
    12·1 answer
  • A sled sliding on a flat,icy surface with a constant velocity is best described by
    15·1 answer
  • The amplitude of a wave decreases gradually as the wave travels down a long, stretched string. What happens to the energy of the
    12·1 answer
  • The temperature of a system drops by 30°F during a cooling process. Express this drop in temperature in K, R, and °C.
    14·1 answer
  • A rocket sled accelerates at 21.5 m/s^2 for 8.75 s. (a) What's its velocity at the end of that time? (b) How far has it traveled
    8·1 answer
  • 7. A mother pushes her 9.5 kg baby in her 5kg baby carriage over the grass with a force of 110N @ an angle
    5·1 answer
  • A 50-kg meteorite moving at 1000 m/s strikes Earth. Assume the velocity is along the line joining Earth's center of mass and the
    13·1 answer
  • A coffee cup on the horizontal dashboard of a car slides forward when the driver decelerates from 45 kmh to rest in 3.5 s or les
    10·1 answer
  • Explica la relación entre momento de torsión y aceleración angular mencionando tres ejemplos Una varilla uniforme delgada mide 1
    13·1 answer
  • High-speed stroboscopic photographs show that the head of a 200 g golf club is traveling at 43.7 m/s just before it strikes a 45
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!