answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ICE Princess25 [194]
2 years ago
6

Calculate the wavelength of a neutron that has a velocity of 200. cm/s. (the mass of a neutron = 1.675 × 10–27 kg and h = 6.63 ×

10–34 j s).

Physics
2 answers:
Licemer1 [7]2 years ago
6 0
<span>To find the wavelength of a neutron can be calculated by using the formula Wavelength=h/m x v Where h is planck's constant m=mass of neutron v= velocity of the particle By substituting the given values Wavelength= 6.63 × 10–34 j s / 1.675 × 10–27 kg x 2 m/s^-1 Wavelength of a neutron=1.979 x 10^-7 m</span>
ANTONII [103]2 years ago
3 0

The wavelength of a neutron is 1.98 × 10⁻⁷ m

<h3>Further explanation</h3>

The term of package of electromagnetic wave radiation energy was first introduced by Max Planck. He termed it with photons with the magnitude is:

\large {\boxed {E = h \times f}}

<em>E = Energi of A Photon ( Joule )</em>

<em>h = Planck's Constant ( 6.63 × 10⁻³⁴ Js )</em>

<em>f = Frequency of Eletromagnetic Wave ( Hz )</em>

The photoelectric effect is an effect in which electrons are released from the metal surface when illuminated by electromagnetic waves with large enough of radiation energy.

\large {\boxed {E = \frac{1}{2}mv^2 + \Phi}}

\large {\boxed {E = qV + \Phi}}

<em>E = Energi of A Photon ( Joule )</em>

<em>m = Mass of an Electron ( kg )</em>

<em>v = Electron Release Speed ( m/s )</em>

<em>Ф = Work Function of Metal ( Joule )</em>

<em>q = Charge of an Electron ( Coulomb )</em>

<em>V = Stopping Potential ( Volt )</em>

Let us now tackle the problem!

This problem is about De Broglie's wavelength.

<u>Given:</u>

v = 200 cm/s = 2 m/s

m = 1.675 × 10⁻²⁷ kg

h = 6.63 × 10⁻³⁴ Js

<u>Unknown:</u>

λ  = ?

<u>Solution:</u>

\lambda = \frac{h}{mv}

\lambda = \frac{6.63 \times 10^{-34}}{1.675 \times 10^{-27} \times 2}

\large {\boxed {\lambda \approx 1.98 \times 10^{-7} ~ m} }

<h3>Learn more</h3>
  • Photoelectric Effect : brainly.com/question/1408276
  • Statements about the Photoelectric Effect : brainly.com/question/9260704
  • Rutherford model and Photoelecric Effect : brainly.com/question/1458544
  • Photoelectric Threshold Wavelength : brainly.com/question/10015690

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Quantum Physics

Keywords: Quantum , Photoelectric , Effect , Threshold , Frequency , Electronvolt

You might be interested in
Armand is monitoring a large sealed tank by way of a sensor that records the liquid level over time on a graph. He looks at the
timofeeve [1]

Answer:

i need ppoints

Explanation:

4 0
1 year ago
Read 2 more answers
Water at 20°C flows by gravity through a smooth pipe from one reservoir to a lower one. The elevation difference is 60 m. The pi
Serga [27]

Answer:

Flow Rate = 80 m^3 /hours  (Rounded to the nearest whole number)

Explanation:

Given

  • Hf = head loss
  • f = friction factor
  • L = Length of the pipe = 360 m
  • V = Flow velocity, m/s
  • D = Pipe diameter = 0.12 m
  • g = Gravitational acceleration, m/s^2
  • Re = Reynolds's Number
  • rho = Density =998 kg/m^3
  • μ = Viscosity = 0.001 kg/m-s
  • Z = Elevation Difference = 60 m

Calculations

Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)

The energy equation for this system will be,

Hp = Z + Hf

The other three equations to solve the above equations are:

Re = (rho*V*D)/ μ

Flow Rate, Q = V*(pi/4)*D^2

Power = 15000 W = rho*g*Q*Hp

1/f^0.5 = 2*log ((Re*f^0.5)/2.51)

We can iterate the 5 equations to find f and solve them to find the values of:

Re = 235000

f = 0.015

V = 1.97 m/s

And use them to find the flow rate,

Q = V*(pi/4)*D^2

Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours

7 0
2 years ago
Some fuel cells are powered by hydrogen. Scientists are looking into the decomposition of water (H2O) to make hydrogen fuel with
mr_godi [17]

A challenge scientists face with this process is the use of ultrathin iron oxide, to pull protons off water and produce hydrogen gas, which itself is a poor electrical conductor.

5 0
1 year ago
Read 2 more answers
Terminal velocity. A rider on a bike with the combined mass of 100kg attains a terminal speed of 15m/s on a 12% slope. Assuming
Firlakuza [10]

Answer:

0.9378

Explanation:

Weight (W) of the rider = 100 kg;

since 1 kg = 9.8067 N

100 kg will be = 980.67 N

W = 980.67 N

At the slope of 12%, the angle θ is calculated as:

tan \ \theta = \dfrac{12}{100} \\ \\  tan \ \theta = 0.12 \\ \\  \theta = tan^{-1}(0.12) \\\\ \theta = 6.84^0

The drag force D = Wsinθ

\dfrac{1}{2}C_v \rho AV^2 = W sin \theta

where;

\rho = 1.23 \ kg/m^3

A = 0.9 m²

V = 15 m/s

∴

Drag coefficient C_D = \dfrac{2 *W*sin \theta}{\rho *A *V^2}

C_D =\dfrac{2 *980.67*sin 6.84}{1.23 *0.9 *15^2}

C_D =0.9378

8 0
1 year ago
Glider‌ ‌A‌ ‌of‌ ‌mass‌ ‌0.355‌ ‌kg‌ ‌moves‌ ‌along‌ ‌a‌ ‌frictionless‌ ‌air‌ ‌track‌ ‌with‌ ‌a‌ ‌velocity‌ ‌of‌ ‌0.095‌ ‌m/s.‌
NemiM [27]

Answer:

vB' = 0.075[m/s]

Explanation:

We can solve this problem using the principle of linear momentum conservation, which tells us that momentum is preserved before and after the collision.

Now we have to come up with an equation that involves both bodies, before and after the collision. To the left of the equal sign are taken the bodies before the collision and to the right after the collision.

(m_{A}*v_{A})+(m_{B}*v_{B})=(m_{A}*v_{A'})+(m_{B}*v_{B'})

where:

mA = 0.355 [kg]

vA = 0.095 [m/s] before the collision

mB = 0.710 [kg]

vB = 0.045 [m/s] before the collision

vA' = 0.035 [m/s] after the collision

vB' [m/s] after the collison.

The signs in the equation remain positive since before and after the collision, both bodies continue to move in the same direction.

(0.355*0.095)+(0.710*0.045)=(0.355*0.035)+(0.710*v_{B'})\\v_{B'}=0.075[m/s]

7 0
1 year ago
Other questions:
  • You are waiting to turn left into a small parking lot. a car approaching from the opposite direction has a turn signal on. you s
    15·1 answer
  • A teacher uses the model that little invisible gremlins speed up or slow down objects and the direction they push gives the dire
    15·2 answers
  • If you are driving 72 km/h along a straight road and you look to the side for 4.0 s, how far do you travel during this inattenti
    9·1 answer
  • Trace fossils are recognized as evidence of which pre-existing life? plants plants and animals neither plants nor animals animal
    11·2 answers
  • The dogs of four-time Iditarod Trail Sled Dog Race champion Jeff King pull two 100-kg sleds that are connected by a rope. The sl
    11·1 answer
  • Water runs into a fountain, filling all the pipes, at a steady rate of 0.750 m3&gt;s. (a) How fast will it shoot out of a hole 4
    10·1 answer
  • Calculate the true mass (in vacuum) of a piece of aluminum whose apparent mass is 4.5000 kgkg when weighed in air. The density o
    5·1 answer
  • A 817 kg car has four 8.91 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rot
    12·1 answer
  • A cylindrical flask is fitted with an airtight piston that is free to slide up and down. A mass rests on the top of the piston.
    6·1 answer
  • 3. The expression 0.62 x10^3 is equivalent to...
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!