Answer:
2.25 %
Explanation:
65-95-99.7 is a rule to remember the precentages that lies around the mean.
at the range of mean (
) plus or minus one standard deviation (
),
at the range of mean plus or minus two standard deviation,
at the range of mean plus or minus three standard deviation,
So, note that they are asking about the probability that it is greater than 0.32, that is the mean (0.3) plus two times the standard deviation (0.1) (
)
So we know that the 95.5% is between
and
, hence approximately the 4.5% (100%-95.5%) is greater than 0.32 or less than 0.28. But half (4.5%/2=2.25%) is greater than 0.32 and the other half is less than 0.28.
So
First off, you can cross out alternating current because a 9V battery doesn't give out AC, it gives out solely DC. If the battery is connected to each battery individually, then they are in parallel. So, according to Kirchhoff's Voltage Law, in parallel, V total = V1 = V2= V3..
So I'd say B) !
The kinetic energy of any moving object is
(1/2) (mass) (speed²) .
For the object you described, that's
(1/2) (100 kg) (12.5 m/s)²
= (50 kg) (156.25 m²/s²)
= 7,812.5 joules
______________________________
Your attachment is way out of focus, and impossible to read.
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg.
F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N
Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m
Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356 N
Ratio = 0.356 N/589.18 N
<em>Ratio = 6.04</em>