F= (speed)/(wavelength)
Therefore, speed = Frequency x wavelength
V = 68m/s
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

Answer:
1.) Magnitude = 5596 N
2.) Direction = 60 degrees
Explanation: You are given that the breakdown vehicle A is exerting a force of 4000 N at angle 45 degree to the vertical and breakdown vehicle B is exerting a force of 2000 N
Let us resolve the two forces into X and Y component
Sum of the forces in the X - component will be 4000 × cos 45 = 2828.43 N
Sum of the forces in the Y - component will be 2000 + ( 4000 × sin 45 )
= 2000 + 2828.43
= 4828.43 N
The resultant force R will be
R = sqrt ( X^2 + Y^2 )
Substitutes the forces at X component and Y component into the formula
R = sqrt ( 2828.43^2 + 4828.43^2 )
R = sqrt ( 31313752.53 )
R = 5595.87 N
The direction will be
Tan Ø = Y/X
Substitute Y and X into the formula
Tan Ø = 4828.43 / 2828.43
Tan Ø = 1.707106
Ø = tan^-1( 1.707106 )
Ø = 59.64 degree
Therefore, approximately, the magnitude and direction of the resultant force on the truck are 5596 N and 60 degree respectively.
Answer: TRUST ME I GOT IT WRONG the answer is B
Explanation:
Centripetal Force (Fcp) = ?
His arm length = Radius (R) = 0.75 m
Discus velocity = Linear Velocity (V) = 5 m/s
Discus mass (m) = 2 kg
Centripetal Acceleration (Acp) = V^2/R or W^2 x R
In this case i will use the V^2/R formula, because it uses the discus velocity (V).


Answer: Last option, 66 N.