answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
1 year ago
14

You are piloting a helicopter which is rising vertically at a uniform velocity of 14.70 m/s. When you reach 196.00 m, you see Ba

rney (Uh-oh). A large object is projected with a horizontal velocity of 8.50 m/s from the rising helicopter. When does the ball reach Barney's head if he is standing in a hole with his head at ground level?
Physics
1 answer:
Cloud [144]1 year ago
6 0

Answer:

The ball reaches Barney  head in  t = 8 \ s

Explanation:

From the question we are told that

 The rise velocity is  v  =  14.70 \  m/s

  The height considered is h =  196 \  m

   The horizontal velocity of the large object is  v_h  =  8.50 \  m/s

   

Generally from kinematic equation  

   s = ut + \frac{1}{2} gt^2

Here s is the distance of the object from Barney head ,

        u is the velocity of the object along the vertical axis which is equal but opposite to the velocity of the helicopter

So  

     u = -14.7 m/s

So

    196  = -14.7 t  + \frac{1}{2} * 9.8 * t^2

=  4.9 t^2 - 14.7t - 196 = 0

Solving the above equation using quadratic formula  

    The value of  t obtained is  t = 8 \ s

You might be interested in
Your teacher burns a piece of steel wool in class, demonstrating the chemical property, flammability. You are curious to see wha
LekaFEV [45]

Answer:

I assume by "which" of these you're looking for an example. Water freezing into ice or water, or evaporation, the process of turning from liquid into vapor, would not be chemical changes.

Explanation:

These are physical changes because they do not form a new substance, a chemical change requires a change in the chemical makeup of the substance.

3 0
2 years ago
How could the combustibility of a substance influence how the substances used
aliina [53]

Answer:

Combustibility is a measure of how easily a substance bursts into flame, through fire or combustion. This is an important property to consider when a substance is used for construction or is being stored. It is also important in processes that produce combustible substances as a by-product.

Explanation:

3 0
2 years ago
Two long, parallel, current-carrying wires lie in an xy-plane. The first wire lies on the line y = 0.340 m and carries a current
sladkih [1.3K]

Answer:

The y-value of the line in the xy-plane where the total magnetic field is zero  U = 0.1355 \ m

Explanation:

From the question we are told that

    The distance of wire one from two along the y-axis is    y = 0.340 m

   The current on the first wire is  I_1 =  (27.5i) A

    The force per unit length on each wire is  Z =  295 \mu N/m = 295*10^{-6}  N/m

Generally the force per unit length is mathematically represented as

         Z = \frac{F}{l}  =  \frac{\mu_o I_1I_2}{2\pi y}

=>      \frac{\mu_o I_1I_2}{2\pi y}  =  295

Where  \mu_o is the permeability of free space with a constant value of  \mu_o  =  4\pi *10^{-7} \ N/A2

substituting values

       \frac{ 4\pi *10^{-7} 27.5 * I_2}{2\pi * 0.340}  =  295 *10^{-6}

=>    I_2 =  18.23 \ A

Let U  denote the  line in the xy-plane where the total magnetic field is zero

So  

      So the force per unit length of  wire 2  from  line  U is equal to the force per unit length of wire 1  from  line  (y - U)      

   So  

         \frac{\mu_o  I_2  }{2 \pi U} =  \frac{\mu_o  I_1  }{2 \pi(y -  U) }

substituting values

          \frac{  18.23  }{ U} =  \frac{ 27.5 }{(0.34 -  U) }

         6.198 -18.23U = 27.5U

          6.198=45.73U

          U = 0.1355 \ m              

5 0
1 year ago
Can a body possess velocity at the same time in horizontal and vertical directions?​
iogann1982 [59]

Answer:

Yes

Explanation:

A body can possess velocity at the same time in horizontal and vertical direction

For example

A projectile

5 0
1 year ago
Suppose the foreman had released the box from rest at a height of 0.25 m above the ground. What would the crate's speed be when
Arturiano [62]

Answer:

v = 2.21 m/s

Explanation:

The foreman had released the box from rest at a height of 0.25 m above the ground.

We need to find the speed of the crate when it reaches the bottom of the ramp. Let v is the velocity at the bottom of the ramp. It can be calculated using conservation of energy as follows :

mgh=\dfrac{1}{2}mv^2\\\\v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 0.25} \\\\v=2.21\ m/s

So, its velocity at the bottom of the ramp is 2.21 m/s.

4 0
1 year ago
Other questions:
  • When Jane drives to work, she always places her purse on the passenger’s seat. By the time she gets to work, her purse has falle
    5·2 answers
  • Junior slides across home plate during a baseball game. If he has a mass of 115 kg, and the coefficient of kinetic friction betw
    11·2 answers
  • The upper end of a 3.80-m-long steel wire is fastened to the ceiling, and a 54.0-kg object is suspended from the lower end of th
    14·1 answer
  • Myth: An organism's kingdom only describes physical characteristics. <br> Fact:<br> Evidence:
    14·1 answer
  • In the Bohr model of the hydrogen atom, the electron moves in a circular orbit of radius 5.3×10−11m with a speed of 2.2×106m/s.
    15·1 answer
  • Carefully consider how the accelerations a1 and a2 are related. Solve for the magnitude of the acceleration, a1, of the block of
    6·1 answer
  • A basketball player grabbing a rebound jumps 76.0 cm vertically. How much total time (ascent and descent) does the player spend.
    7·1 answer
  • A physics department has a Foucault pendulum, a long-period pendulum suspended from the ceiling. The pendulum has an electric ci
    10·1 answer
  • A wire loop is suspended from a string that is attached to point P in the drawing. When released, the loop swings downward, from
    11·1 answer
  • An overhead projector lens is 32.0 cm from a slide (the object) and has a focal length of 30.1 cm. What is the magnification of
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!