answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
2 years ago
14

You are piloting a helicopter which is rising vertically at a uniform velocity of 14.70 m/s. When you reach 196.00 m, you see Ba

rney (Uh-oh). A large object is projected with a horizontal velocity of 8.50 m/s from the rising helicopter. When does the ball reach Barney's head if he is standing in a hole with his head at ground level?
Physics
1 answer:
Cloud [144]2 years ago
6 0

Answer:

The ball reaches Barney  head in  t = 8 \ s

Explanation:

From the question we are told that

 The rise velocity is  v  =  14.70 \  m/s

  The height considered is h =  196 \  m

   The horizontal velocity of the large object is  v_h  =  8.50 \  m/s

   

Generally from kinematic equation  

   s = ut + \frac{1}{2} gt^2

Here s is the distance of the object from Barney head ,

        u is the velocity of the object along the vertical axis which is equal but opposite to the velocity of the helicopter

So  

     u = -14.7 m/s

So

    196  = -14.7 t  + \frac{1}{2} * 9.8 * t^2

=  4.9 t^2 - 14.7t - 196 = 0

Solving the above equation using quadratic formula  

    The value of  t obtained is  t = 8 \ s

You might be interested in
Assume that the particle has initial speed viviv_i. Find its final kinetic energy KfKfK_f in terms of viviv_i, MMM, FFF, and DDD
NeX [460]

Answer:

KE= 1/2mv²

Explanation:

The kinetic energy of a body is the energy possessed by virtue of the body in motion

Given the parameters

m which is the mass of the body

v which is the velocity of the body too

K.E = kinetic energy

The expression for the kinetic energy of a body is given as

KE= 1/2mv²

3 0
2 years ago
Water runs into a fountain, filling all the pipes, at a steady rate of 0.750 m3>s. (a) How fast will it shoot out of a hole 4
kati45 [8]

Answer:

velocity  = 472 m/s

velocity = 52.4 m/s

Explanation:

given data

steady rate = 0.750 m³/s

diameter = 4.50 cm

solution

we use here flow rate formula that is

flow rate = Area × velocity .............1

0.750 = \frac{\pi }{4} × (4.50×10^{-2})²  × velocity

solve it we get

velocity  = 472 m/s

and

when it 3 time diameter

put valuer in equation 1

0.750 = \frac{\pi }{4} × 3 ×  (4.50×10^{-2})²  × velocity

velocity = 52.4 m/s

5 0
2 years ago
If the wire is replaced by an infinite current sheet with density Js = 0.40 A/m, what would be the magnetic flux (in T · m2) thr
oksian1 [2.3K]

Answer:

\phi _{B} =0.855 T-m^{-2}

Explanation:

given data

density of current sheet = 0.40 A/m

length a = 0.27 m

width b = 0.63 m

For infinite sheet, magnetic field is given as

B = \mu _{O}J

magnetic flux is given as

\phi _{B} = BA

                   = \mu _{O}Jab

                   = 4\pi *0.40*0.27*0.63

\phi _{B} =0.855 T-m^{-2}

6 0
2 years ago
Consider a 2100-kg car cruising at constant speed of 70 km/h. Now the car starts to pass another car by accelerating to 110 km/h
Liula [17]

Answer: 51841.5 Watts

Explanation: Using the kinematic equation for the final velocity for a constant acceleration we have:

Vf=Vi+a*t

replacing the values the results is

a=(Vf-Vi)/t= (30.55 m/s-19.44 m/s)/5s= 2.22 m/s^2

Remenber that to convert the speed in Km/h to m/s we have to multiplier by the factor 0.277.

Finally to calculate the increment of power get the final velocity we have to use Neton second law to determine the Force applied to the car.

F=m* a=2100 Kg* 2.22 m/s^2= 4666.2 N

Then increment  power to accelerate is given by:

ΔPower= Force* Δ velocity= 4666.2 N* 11,11 m/s= 51841.5 Watts

6 0
2 years ago
You have been hired to check the technical correctness of an upcoming made-for-TV murder mystery that takes place in a space shu
AlladinOne [14]

Answer:

The astronaut who has a mass of 80 kg without the toolkit do survive with 40 seconds of remaining air

Explanation:

Due the astronaut throws the 10-kg tool kit away with a speed of 8 m/s, it gives a momentum equivalent but in the other direction, so I=mv=(10Kg)(8m/s)=80kg*m/s, then we can find the speed that the astronaut reaches due to its weight we get, v=\frac{I}{m} =\frac{80kg*m/s}{80Kg} =1m/s.

Finally, as the distance to the space shuttle is 200m, the time taken to the astronaut to reach it at the given speed will be t=\frac{d}{v}=\frac{200m}{1m/s}=200s, as the remaining air time is 4 min or 240 seconds, The astronaut who has a mass of 80 kg without the toolkit do survive with 40 seconds of remaining air.

5 0
2 years ago
Other questions:
  • Which equation is most likely used to determine the acceleration from a velocity vs:time graph?
    11·2 answers
  • A taxi starts from Monument Circle and travels 5 kilometers to the east for 5 minutes. Then it travels 10 kilometers to the sout
    6·2 answers
  • A 0.5-kg ball accelerated at 50 m/s2<br> .<br><br> What force was applied?
    7·1 answer
  • All of the following are types of perceptual constancies except __________ constancy. A. direction B. size C. shape D. color
    13·3 answers
  • A block weighing 15 newtons is pulled to the top of an incline that is 0.20 meter above the ground, as shown below. if 4.0 joule
    14·1 answer
  • When a train’s velocity is 12.0 m/s east-ward, raindrops that are falling vertically with respect to the earth make traces that
    6·1 answer
  • Gamma rays may be used to kill pathogens in ground beef. One irradiation facility uses a 60Co source that has an activity of 1.0
    6·1 answer
  • In a football game, running back is at the 10-yard line and running up the field towards the 50 yard
    5·1 answer
  • Kevin Tan's Balance Sheet. Total assets are 13,200 dollars. Total liabilities are 9,150 dollars. What is Kevin’s net worth on Ma
    8·1 answer
  • The diagram shows a stone suspended under the surface of a liquid from a string. The stone experiences a pressure caused by the
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!