answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
2 years ago
10

A square loop of wire with initial side length 10 cm is placed in a magnetic field of strength 1 T. The field is parallel to the

axis of the loop. Somebody carefully grabs the edges of the loop and begins pulling them apart such that the area of the loop increases at a rate of 20 cm2/s. What is the magnitude of the induced EMF in the loop?
Physics
1 answer:
Fofino [41]2 years ago
7 0

Answer:

2 x 10⁻³ volts

Explanation:

B = magnetic of magnetic field parallel to the axis of loop = 1 T

\frac{dA}{dt} = rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²

θ = Angle of the magnetic field with the area vector = 0

E = emf induced in the loop

Induced emf is given as

E = B \frac{dA}{dt}

E = (1) (20 x 10⁻⁴ )

E = 2 x 10⁻³ volts

E = 2 mV

You might be interested in
Finally, you are ready to answer the main question. Cheetahs, the fastest of the great cats, can reach 50.0 miles/hourmiles/hour
slavikrds [6]

Answer:

The acceleration of the cheetahs is 10.1 m/s²

Explanation:

Hi there!

The equation of velocity of an object moving along a straight line with constant acceleration is the following:

v = v0 + a · t

Where:

v = velocity of the object at time t.

v0 = initial velocity.

a = acceleration.

t = time

We know that at t = 2.22 s, v = 50.0 mi/h. The initial velocity, v0, is zero.

Let's convert mi/h into m/s:

50.0 mi/h · (1609.3 m / 1 mi) · (1 h / 3600 s) = 22.4 m/s

Then, using the equation:

v = v0 + a · t

22.4 m/s = 0 m/s + a · 2.22 s

Solving for a:

22.4 m/s / 2.22 s = a

a = 10.1 m/s²

The acceleration of the cheetahs is 10.1 m/s²

5 0
2 years ago
What is the total kinetic energy of a 0.15 kg hockey puck sliding at 0.5 m/s and rotating about its center at 8.4 rad/s? The dia
ycow [4]
The mass of the puck is
m = 0.15 kg.
The diameter of the puck is 0.076 m, therefore its radius  is
r = 0.076/2 = 0.038 m
The sliding speed is
v = 0.5 m/s
The angular velocity is
ω = 8.4 rad/s

The rotational moment of inertia of the puck is
I = (mr²)/2
  = 0.5*(0.15 kg)*(0.038 m)²
  = 1.083 x 10⁻⁴ kg-m²

The kinetic energy of the puck is the sum of the translational and rotational kinetic energy.
The translational KE is
KE₁ = (1/2)*m*v²
       = 0.5*(0.15 kg)*(0.5 m/s)²
       = 0.0187 j

The rotational KE is
KE₂ = (1/2)*I*ω²
       = 0.5*(1.083 x 10⁻⁴ kg-m²)*(8.4 rad/s)²
       = 0.0038 J

The total KE is
KE = 0.0187 + 0.0038 = 0.0226 J

Answer: 0.0226 J


4 0
1 year ago
Somewhere in the vast flat tundra of planet Tehar, a projectile is launched from the ground at an angle of 60 degrees. It reache
Nina [5.8K]

Answer:

R = 0.0503 m

Explanation:

This is a projectile launching exercise, to find the range we can use the equation

       R = v₀² sin 2θ / g

How we know the maximum height

      v_{f}² =v_{oy}² - 2 g y

      v_{f}= 0

      v_{oy} = √ 2 g y

      v_{oy} = √ 2 9.8 / 15

      v_{oy} = 1.14 m / s

Let's use trigonometry to find the speed

    sin θ = v_{oy} / vo

    vo = v_{oy} / sin θ

    vo = 1.14 / sin 60

    vo = 1.32 m / s

We calculate the range with the first equation

     R = 1.32² sin(2 60) / 30

    R = 0.0503 m

3 0
1 year ago
What is the internal energy (to the nearest joule) of 10 moles of Oxygen at 100 K?
kkurt [141]

Answer:

U = 12,205.5 J

Explanation:

In order to calculate the internal energy of an ideal gas, you take into account the following formula:

U=\frac{3}{2}nRT        (1)

U: internal energy

R: ideal gas constant = 8.135 J(mol.K)

n: number of moles = 10 mol

T: temperature of the gas = 100K

You replace the values of the parameters in the equation (1):

U=\frac{3}{2}(10mol)(8.135\frac{J}{mol.K})(100K)=12,205.5J

The total internal energy of 10 mol of Oxygen at 100K is 12,205.5 J

6 0
2 years ago
A wire carrying a current of 10 A and 2 m in length is placed in a field of flux density 0.15 T. What’s the force on the wire if
saul85 [17]

Explanation:

I = 10A

l = 2m

B = 0.15T

F = ?

a) ¶ = 90

F = BILsin¶

F = 0.15×10×2×sin90

F = 3N

b) ¶ = 45 degree

F = BILsin¶

F = 0.15×10×2×sin45

F = 2.12N

c) ¶ = 0 degree

F = BILsin¶

F = 0.15×10×2×sin0

F = 0

Goodluck

7 0
2 years ago
Other questions:
  • If you know that the period of a pendulum is 1.87 seconds, what is the length of that pendulum? (Assume that we are on Earth and
    6·2 answers
  • If steam enters a turbine at 600K and is exhausted at 400K, calculate the efficiency of the engine.
    13·2 answers
  • One game at the amusement park has you push a puck up a long, frictionless ramp. You win a stuffed animal if the puck, at its hi
    6·1 answer
  • A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
    5·1 answer
  • A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6
    10·1 answer
  • A boat of mass 250 kg is coasting, with its engine in neutral, through the water at speed 1.00 m/s when it starts to rain with i
    10·1 answer
  • A ceiling fan has five blades, each with a mass of 0.34 kg and a length of 0.66 m. The fan is operating in its "low" setting at
    6·1 answer
  • Three balls with the same radius 21 cm are in water. Ball 1 floats, with
    8·1 answer
  • An overhead projector lens is 32.0 cm from a slide (the object) and has a focal length of 30.1 cm. What is the magnification of
    5·1 answer
  • A 817 kg car has four 8.91 kg wheels. When the car is moving, what fraction of the total kinetic energy of the car is due to rot
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!