answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
34kurt
2 years ago
10

A square loop of wire with initial side length 10 cm is placed in a magnetic field of strength 1 T. The field is parallel to the

axis of the loop. Somebody carefully grabs the edges of the loop and begins pulling them apart such that the area of the loop increases at a rate of 20 cm2/s. What is the magnitude of the induced EMF in the loop?
Physics
1 answer:
Fofino [41]2 years ago
7 0

Answer:

2 x 10⁻³ volts

Explanation:

B = magnetic of magnetic field parallel to the axis of loop = 1 T

\frac{dA}{dt} = rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²

θ = Angle of the magnetic field with the area vector = 0

E = emf induced in the loop

Induced emf is given as

E = B \frac{dA}{dt}

E = (1) (20 x 10⁻⁴ )

E = 2 x 10⁻³ volts

E = 2 mV

You might be interested in
Certain meteorites have been examined and found to carry samples of which molecules?
ki77a [65]

Answer:

Sugars...

Explanation:

Several meteorites have been found to carry molecules of sugars that are essential for life. These sugars include Ribose, Arabinose and Xylose. These are found in meteorites that are rich in carbon. These significant discoveries can pave way in finding the origin of life on Earth.

6 0
2 years ago
On a guitar, the lowest toned string is usually strung to the E note, which produces sound at 82.4 82.4 Hz. The diameter of E gu
Vsevolod [243]

The complete and comprehensive solution is attached.

8 0
2 years ago
A.Whale communication. Blue whales apparently communicate with each other using sound of frequency 17.0 Hz, which can be heard n
Y_Kistochka [10]

A. 90.1 m

The wavelength of a wave is given by:

\lambda=\frac{v}{f}

where

v is the speed of the wave

f is its frequency

For the sound emitted by the whale, v = 1531 m/s and f = 17.0 Hz, so the wavelength is

\lambda=\frac{1531 m/s}{17.0 Hz}=90.1 m

B. 102 kHz

We can re-arrange the same equation used previously to solve for the frequency, f:

f=\frac{v}{\lambda}

where for the dolphin:

v = 1531 m/s is the wave speed

\lambda=1.50 cm=0.015 m is the wavelength

Substituting into the equation,

f=\frac{1531 m/s}{0.015 m}=1.02 \cdot 10^5 Hz=102 kHz

C. 13.6 m

Again, the wavelength is given by:

\lambda=\frac{v}{f}

where

v = 340 m/s is the speed of sound in air

f = 25.0 Hz is the frequency of the whistle

Substituting into the equation,

\lambda=\frac{340 m/s}{25.0 Hz}=13.6 m

D. 4.4-8.7 m

Using again the same formula, and using again the speed of sound in air (v=340 m/s), we have:

- Wavelength corresponding to the minimum frequency (f=39.0 Hz):

\lambda=\frac{340 m/s}{39.0 Hz}=8.7 m

- Wavelength corresponding to the maximum frequency (f=78.0 Hz):

\lambda=\frac{340 m/s}{78.0 Hz}=4.4 m

So the range of wavelength is 4.4-8.7 m.

E. 6.2 MHz

In order to have a sharp image, the wavelength of the ultrasound must be 1/4 of the size of the tumor, so

\lambda=\frac{1}{4}(1.00 mm)=0.25 mm=2.5\cdot 10^{-4} m

And since the speed of the sound wave is

v = 1550 m/s

The frequency will be

f=\frac{v}{\lambda}=\frac{1550 m/s}{2.5\cdot 10^{-4} m}=6.2\cdot 10^6 Hz=6.2 MHz

3 0
2 years ago
If it were possible to remove gravity and friction, think about what would happen to a football if it were tossed into the air.
elena-14-01-66 [18.8K]
Ignoring fluid resistance, football will <span>maintain a constant speed until other forces accelerate the football.</span>
6 0
2 years ago
Read 2 more answers
Before leaving the house in the morning, you plop some stew in your slow cooker and turn it on Low. The slow cooker has a 160 Oh
guajiro [1.7K]

Answer:

Total charge flow through the cooker is 21600 C

Explanation:

As we know that the current flow through the cooker is given by Ohm's law

here it is given as

V = i R

i = \frac{V}{R}

i = \frac{120}{160}

i = \frac{3}{4} A

now the charge flow through it is given as

Q = i t

total time is t = 8 hours

Q = \frac{3}{4}(8 \times 60 \times 60)

Q = 21600 C

7 0
2 years ago
Other questions:
  • Find τf, the torque about point p due to the force applied by the achilles' tendon.
    11·1 answer
  • Atmospheric pressure decreases as altitude increases. in other words, there is more air pushing down on you at sea level, and th
    8·1 answer
  • A uniform metal bar is 5.00 m long and has mass 0.300 kg. The bar is pivoted on a narrow support that is 2.00 m from the left-ha
    8·1 answer
  • A place kicker applies an average force of 2400 N to a football of .040 kg. The force is applied at an angle of 20.0 degrees fro
    10·1 answer
  • A ray of light is incident on a plane surface separating two sheets of glass with refractive indexes 1.70 and 1.58. The angel of
    7·2 answers
  • A viscous liquid is sheared between two parallel disks of radius �, one of which rotates with angular speed Ω, while the other i
    14·1 answer
  • A train composed of a small engine car and a massive cargo car are connected as they move along a track. The speed of the small
    14·1 answer
  • How could the combustibility of a substance influence how the substances used
    11·1 answer
  • A 1 mg ball carrying a charge of 2 x 10-8 C hangs from a
    5·1 answer
  • What is the minimum amount of energy required to completely melt a 7.25-kg lead brick which has a starting temperature of 18.0 °
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!