Answer:
V_infinty=98.772 m/s
Explanation:
complete question is:
The following problem assume an inviscid, incompressible flow. Also, standard sea level density and pressure are 1.23kg/m3(0.002377slug/ft3) and 1.01imes105N/m2(2116lb/ft2), respectively. A Pitot tube on an airplane flying at standard sea level reads 1.07imes105N/m2. What is the velocity of the airplane?
<u>solution:</u>
<u>given:</u>
<em>p_o=1.07*10^5 N/m^2</em>
<em>ρ_infinity=1.23 kg/m^2</em>
<em>p_infinity=1.01*10^5 N/m^2</em>
p_o=p_infinity+(1/2)*(ρ_infinity)*V_infinty^2
V_infinty^2=9756.097
V_infinty=98.772 m/s
Calcium chloride contains ionic bonds.
Pennies contain metallic bonds.
Hydrochloric acid contains covalent bonds.
You're welcome.
Given required solution
M=10kg W=? W=Fd
v=5.0m/s F=mg
t=2.40s =10*10=100N
S=VT
=5m/s*2.4s
=12m
so W=12*100
W=1200J
The unit 'mb' means millibar which is equivalent to 1/1000 of 1 bar. To convert the units from bar to atmospheres (atm) and to inches Hg (inHg), we need to know the conversion factors.
a.) 1 atm = 1.01325 bar
0.92 mb(1 bar/1000 mbar)(1 atm/1.01325 bar) =<em> 9.08×10⁻⁴ atm</em>
b.) 1 bar = 29.53 inHg
0.92 mb(1 bar/1000 mbar)(29.53 inHg/1 bar) =<em> 0.027 inHg</em>