Answer:
We need to multiply 12 to each term to eliminate fractions.
Explanation:
Given expression:

To eliminate the fraction we need to multiply each term by least common multiple of the denominators of the fraction.
The denominators in the above expressions are:
4, 3 and 2
The multiples of each can be listed below.
2⇒ 2,4,6,8,10,<u>12</u>,14,16.....
3⇒ 3,6,9,<u>12</u>,15,18
4⇒ 4,8,<u>12</u>.......
From the list of the multiples stated, we can see the least common multiple is 12.
So we will multiply each term by 12.
Multiplying 12 to both sides.

Using distribution,

Thus we successfully eliminated the fractions.
Answer:
Magnetic force, F = 0.24 N
Explanation:
It is given that,
Current flowing in the wire, I = 4 A
Length of the wire, L = 20 cm = 0.2 m
Magnetic field, B = 0.6 T
Angle between force and the magnetic field, θ = 30°. The magnetic force is given by :


F = 0.24 N
So, the force on the wire at an angle of 30° with respect to the field is 0.24 N. Hence, this is the required solution.
Answer:
A driver.
Explanation:
Using a driver while at least 350 yds away is better than using a iron, because it will be a waste of the par 4 as it is not as powerful as the driver.
Answer:
223 degree
Explanation:
We are given that
Magnitude of resultant vector= 8 units
Resultant vector makes an angle with positive -x in counter clockwise direction

We have to find the magnitude and angle of the equilibrium vector.
We know that equilibrium vector is equal in magnitude and in opposite direction to the given vector.
Therefore, magnitude of equilibrium vector=8 units
x-component of a vector=
Where v=Magnitude of vector
Using the formula
x-component of resultant vector=
y-component of resultant vector=
x-component of equilibrium vector=
y-component of equilibrium vector=
Because equilibrium vector lies in III quadrant

The angle
lies in III quadrant
In III quadrant ,angle =
Angle of equilibrium vector measured from positive x in counter clock wise direction=180+43=223 degree
Ok the velocity of an object in free fall is given by the equation :
v=v0-gt, where v0 is the original velocity, g is the gravitational constant (9.8 m/s^2) and t is the time.
so, we substitute values into this equation. v=35.8-9.8*2.5; v=11.3 m/s