answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
torisob [31]
1 year ago
6

Suzette had prepared the graph below to add to her lab

Physics
2 answers:
andre [41]1 year ago
6 0

Answer:

<h2>A title.</h2>

Explanation:

The thing missing here is not regarding the calculations, because Suzette even draw the line that explain the relation between the two variables, which also are included there. However, Suzette didn't include the title of the graph, so basically, we don't know to which problem belongs that graph. This is an important issue, because in lab report, we tend to have a lot of information, and if it's not identified, it's completely useful.

Charra [1.4K]1 year ago
4 0

Answer:

A title

Explanation:

Because this is middle school.

You might be interested in
Mickey, a daredevil mouse of mass m , m, is attempting to become the world's first "mouse cannonball." He is loaded into a sprin
Sati [7]

Answer:

  h = v₀² / 2g ,      h = k/4g     x²

Explanation:

In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches

Starting point. Lower compressed spring

              Em₀ = K = ½ m v²

Final point. Highest on the path

             Em_{f} = U = mg h

             

As or no friction the energy is conserved  

              Em₀ =  Em_{f}

              ½ m v₀²² = m g h

             h = v₀² / 2g

We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse

                  ½ k x² = 2 g h

                  h = k/4g     x²

8 0
2 years ago
Read 2 more answers
A black, totally absorbing piece of cardboard of area A = 1.7 cm2 intercepts light with an intensity of 8.1 W/m2 from a camera s
Furkat [3]

Answer:

2.7x10⁻⁸ N/m²

Explanation:

Since the piece of cardboard absorbs totally the light, the radiation pressure can be found using the following equation:

p_{rad} = \frac{I}{c}

<u>Where:</u>

p_{rad}: is the radiation pressure

I: is the intensity of the light = 8.1 W/m²

c: is the speed of light = 3.00x10⁸ m/s

Hence, the radiation pressure is:

p_{rad} = \frac{I}{c} = \frac{8.1 W/m^{2}}{3.00 \cdot 10^{8} m/s} = 2.7 \cdot 10^{-8} N/m^{2}

Therefore, the radiation pressure that is produced on the cardboard by the light is 2.7x10⁻⁸ N/m².

I hope it helps you!

3 0
2 years ago
Read 2 more answers
A coin with a diameter 3.00 cm rolls up a 30.0 inclined plane. The coin starts out with an initial angular speed of 60.0 rad/s
sweet [91]

This question is in complete.The question is

A coin with a diameter 3.00 cm rolls up a 30.0° inclined plane. The coin starts out with an initial angular speed of 60.0 rad/s and rolls in a straight line without slipping. If the moment of inertia of the coin is(1/2) MR² , how far will the coin roll up the inclined plane (length along the ramp)? Hint: Conservation of mechanical energy.

Answer:

distance=0.124 m

Explanation:

mgh=mglSin\alpha =(1/2)Iw_{i}^{2}+(1/2)mv^{2}\\   v=wR\\Solve for L\\L=((1/2)(1/2)0.015^{2}*60^{2}+(1/2)(60*0.015^{2} ))/9.8Sin30\\   L=0.124m

6 0
2 years ago
The maximum efficiency of a heat engine operating between 2 degrees c and 200 degrees c will be about:
Bess [88]
Hui4itfuwrtbitbwibrknfl3unfn6io4gnig4klg4mgmyy4m;l3
6 0
2 years ago
The eiffel tower has a mass of 7.3 million kilograms and a height of 324 meters. its base is square with a side length of 125 me
uranmaximum [27]

Since the tower base is square with a side length of  125 m,

Therefore,

(125\ m)^2+ (125\ m)^2=31250 m^2

Square root of 31250 = 176.776953 (Diameter) , so this is the diameter of the cylinder to enclose it, and radius, r = 88.38834765 m and height, h = 324 m.

The volume of cylinder,

=\pi r^2h=3.14(88.38834765 m)^2\times 324 m =7948168.803\ m^3

Thus, the mass of the air in the cylinder,

=1.225\ kg/m^3 \times 7948168.803\ m^3=9736506.78\ kg

Hence, the mass of the air in the cylinder is this more  than the mass of the tower.


4 0
1 year ago
Other questions:
  • Can a force directed north balance a force directed east
    14·1 answer
  • Compressional stress on rock can cause strong and deep earthquakes, usually at _____.
    11·1 answer
  • the arm of a crane is 15.0 m long and makes an angle of 70.0 degrees with the horizontal. Assume that the maximum load for the c
    9·1 answer
  • A child is sliding a toy block (with mass = m) down a ramp. The coefficient of static friction between the block and the ramp is
    9·2 answers
  • Which number can each term of the equation be multiplied by to eliminate the fractions before solving? 6 – x + = 6 minus StartFr
    13·2 answers
  • An amusement park ride consists of a car moving in a vertical circle on the end of a rigid boom of negligible mass. The combined
    8·1 answer
  • WILL GIVE BRAINLIEST AND 100 POINTS! NEED THIS ASAP!
    13·1 answer
  • Let v1, , vk be vectors, and suppose that a point mass of m1, , mk is located at the tip of each vector. The center of mass for
    6·1 answer
  • 1. A2 .7-kg copper block is given an initial speed of 4.0m/s on a rough horizontal surface. Because of friction, the block final
    10·1 answer
  • Pulling out of a dive, the pilot of an airplane guides his plane into a vertical circle with a radius of 600 m. At the bottom of
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!