Answer:
Mass of bike = 38 kg.
Explanation:
Kinetic energy is given by the expression,
, where m is the mass and v is the velocity.
Here speed of child riding bike = 6 m/s
Mass of child = 30 kg
Total kinetic energy = 1224 J
Let the mass of bike be, m kg
So, total mass of child and bike = (m + 30) kg
Substituting,

So, mass of bike = 38 kg.
Answer: A. Greater than 384 Hz
Explanation:
The velocity of sound is directly related to the temperature rather it is directly proportional meaning if the temperature decreases the velocity decreases and if temperature increases the velocity increases.
Now, we are given that temperature has risen from 20°C to 25°C meaning it has increases. So it implies that velocity must also increase.
Also, the velocity for organ pipe is directly proportional to its frequency. Now if velocity increases frequency must also increase. In this case, the original frequency is 384 Hz. Now increasing the temperature resulted in increase in velocity and thus increase in frequency.
So option a is correct. i.e. now frequency will be greater than 384 Hz.
Answer:
Explanation:
the force of the rocket engine pushing it up, the force of gravity pulling it down, maybe some force of air resistance as the rocket goes fast, hmmm Free Body Diagrams (FBD) should have any and all forces on the model, unless they are negligible . or so slight they really make little difference in the total outcome.
Answer:
Explanation:
Since the front and back of the rocket simultaneously line up with forward and backward end of the platform respectively .
Then length of the platform = length of the train rocket .
A )
Time to cross a particular point on the platform
= length of rocket train / .96 x 3 x 10⁸
= 90 / .96 x 3 x 10⁸
= 31.25 x 10⁻⁸ s
B) Rest length of the rocket = length of platform = 90 m
C ) length of platform as viewed by moving observer =

= 
= 321 m
D ) For the observer on platform time taken = 31.25 x 10⁻⁸ s
for the observer in the rocket , time will be dilated so time recorded by observer in motion ,
8.75 x 10⁻⁸ s .
The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.