You can't find the acceleration of the ball. The graph tells the force, but you'd also need to know the mass of the ball.
Answer:
Current, I = 1000 A
Explanation:
It is given that,
Length of the copper wire, l = 7300 m
Resistance of copper line, R = 10 ohms
Magnetic field, B = 0.1 T

Resistivity, 
We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :




r = 0.00199 m
or

The magnetic field on a current carrying wire is given by :



I = 1000 A
So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.
The magnitude of the change in momentum of the stone is about 18.4 kg.m/s

<h3>Further explanation</h3>
Let's recall Impulse formula as follows:

<em>where:</em>
<em>I = impulse on the object ( kg m/s )</em>
<em>∑F = net force acting on object ( kg m /s² = Newton )</em>
<em>t = elapsed time ( s )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of ball = m = 0.500 kg
initial speed of ball = vo = 20.0 m/s
final kinetic energy = Ek = 70% Eko
<u>Asked:</u>
magnitude of the change of momentum of the stone = Δp = ?
<u>Solution:</u>
<em>Firstly, we will calculate the final speed of the ball as follows:</em>



→ <em>negative sign due to ball rebounds</em>


<em>Next, we could find the magnitude of the change of momentum of the stone as follows:</em>

![\Delta p_{stone} = - [ mv - mv_o ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20-%20%5B%20mv%20-%20mv_o%20%5D)
![\Delta p_{stone} = m[ v_o - v ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20m%5B%20v_o%20-%20v%20%5D)
![\Delta p_{stone} = m[ v_o + v_o\sqrt{0.7} ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20m%5B%20v_o%20%2B%20v_o%5Csqrt%7B0.7%7D%20%5D)
![\Delta p_{stone} = mv_o [ 1 + \sqrt{0.7} ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%20mv_o%20%5B%201%20%2B%20%5Csqrt%7B0.7%7D%20%5D)
![\Delta p_{stone} = 0.500 ( 20.0 ) [ 1 + \sqrt{0.7} ]](https://tex.z-dn.net/?f=%5CDelta%20p_%7Bstone%7D%20%3D%200.500%20%28%2020.0%20%29%20%5B%201%20%2B%20%5Csqrt%7B0.7%7D%20%5D)


<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Dynamics
Answer:
v_avg = 2.9 cm/s
Explanation:
The average velocity of the object is the sum of the distance of all its trajectories divided the time:

x_all is the total distance traveled by the object. In this case you have that the object traveled in the first trajectory 165cm-15cm = 150cm, and in the second one, 165cm - 25cm = 140cm
Then, x_all = 150cm + 140cm = 290cm
The average velocity is, for t = 100s

hence, the average velocity of the object in the total trajectory traveled is 2.9 cm/s
Answer:
Frictional force, F = 45.9 N
Explanation:
It is given that,
Weight of the box, W = 150 N
Acceleration, 
The coefficient of static friction between the box and the wagon's surface is 0.6 and the coefficient of kinetic friction is 0.4.
It is mentioned that the box does not move relative to the wagon. The force of friction is equal to the applied force. Let a is the acceleration. So,



Frictional force is given by :


F = 45.9 N
So, the friction force on this box is closest to 45.9 N. Hence, this is the required solution.