Answer:
λ = 2042 nm
Explanation:
given data
screen distance d = 11 m
spot s = 4.5 cm = 4.5 ×
m
separation L = 0.5 mm = 0.5 ×
m
to find out
what is λ
solution
we will find first angle between first max and central bright
that is tan θ = s/d
tan θ = 4.5 ×
/ 11
θ = 0.234
and we know diffraction grating for max
L sinθ = mλ
here we know m = 1 so put all value and find λ
L sinθ = mλ
0.5 ×
sin(0.234) = 1 λ
λ = 2042.02 ×
m
λ = 2042 nm
Answer:
f=8.219*10^{8}Hz
Explanation:
We are going to use the formula v=fλ
Where v= velocity of radio waves
f= frequency
λ= wavelength of wave
- radio waves are electromagnetic waves and as such they have the speed of light which is 3*10^{8}m/s.
- also when a wave travels from one medium to another, the wavelength changes while the frequency remains the same.
- calculating for the frequency of the wave in air also gives us the frequency in the window glass.
f=\frac{v}{λ}
v=3*10^{8}m/s.
λ=36.5 cm = 36.5/100= 0.365m
f=\frac{3*10^{8}m/s.}{0.365m}
f=8.219*10^{8}Hz
Radio wave is about 3.10^8m/s divided by 10^8 hz is 3 nesters sound wave is 343m/s so thus Equal to approximately 0.78
We are given the following values:
weight w = 240 lb = 1,067.52 N
energy E = 3,000 J
The formula for potential energy is:
E = w h
where h is the height the person has to climb, therefore:
h = 3000 / 1067.52
<span>h = 2.81 m</span>
<span>
</span>
<span>Therefore he has to climb 2.81 meters</span>
Answer:
This is a conceptual problem so I will try my best to explain the impossible scenario. First of all the two dust particles ara virtually exempt from any external forces and at rest with respect to each other. This could theoretically happen even if it's difficult for that to happen. The problem is that each of the particles have an electric charge which are equal in magnitude and sign. Thus each particle should feel the presence of the other via a force. The forces felt by the particles are equal and opposite facing away from each other so both charges have a net acceleration according to Newton's second law because of the presence of a force in each particle:

Having seen Newton's second law it should be clear that the particles are actually moving away from each other and will not remain at rest with respect to each other. This is in contradiction with the last statement in the problem.