answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
2 years ago
7

The drawing shows a side view of a swimming pool. The pressure at the surface of the water is atmospheric pressure. The pressure

at the bottom of the pool is greater because of the weight of water above it. As a storm approaches, the atmospheric pressure drops. What happens to the pressure at the bottom of the pool? A The pressure at the bottom of the pool decreases by exactly the same amount as the atmospheric pressure decreases. B Nothing happens to the pressure at the bottom of the pool. C The pressure at the bottom of the pool increases. D The pressure at the bottom of the pool decreases, but not as much as the atmospheric pressure decreases.
Physics
2 answers:
Nikitich [7]2 years ago
7 0

Answer:

A) To true. he pressure at the bottom of the pool decreases by exactly the same amount as the atmospheric pressure decreases

Explanation:

Let us propose the solution of this problem before seeing the final statements. The pressure increases with the depth of raposin due to the weight of water that is above the person and also the pressure exerted by the atmosphere on the entire pool, the equation describing this process is

    P =P_{atm} + ρ g y

Where P_{atm} is the atmospheric pressure, ρ  the water density, and 'y' the depth measured from the surface.

Let's examine this equation in we see that the total pressure is directly proportional to the atmospheric pressure and depth

Now we can examine the claims

A) To true. State agreement or with the equation above

B) False. Pressure changes with atmospheric pressure

C) False. It's the opposite

D) False. They are directly proportional

miss Akunina [59]2 years ago
3 0

A The pressure at the bottom of the pool decreases by exactly the same amount as the atmospheric pressure decreases

<h3>Further explanation </h3>

Hydrostatic pressure is pressure caused by the weight of a liquid.

The weight of a liquid is affected by the force of gravity.

If a liquid is placed in a container, the higher the liquid content in the container, the heavier the liquid content is and the greater the liquid pressure at the bottom of the container.

The hydrostatic pressure of a liquid can be formulated:

\large{\boxed{\bold {P_h ~ = ~ \rho.g.h}}

Ph = hydrostatic pressure (N / m², Pa)

ρ = density of liquid (kg / m³)

g = acceleration due to gravity (m / s²)

h = height / depth of liquid surface (m)

If the container is open, then the atmospheric pressure (P₀) can be entered into the equation.

\large{\boxed {\bold {P_h ~ = ~ P_o ~ + ~ \rho.g.h}}

The magnitude of P₀ is usually equal to = 1.01.10⁵ Pascal (Pa = N / m²) = 1 atm

For example submarines  :

The deeper a submarine is, the greater the hydrostatic pressure it experiences, so that the hull / wall of the submarine is made thick to withstand that pressure.

As a storm approaches, the atmospheric pressure drops

Because the hydrostatic pressure is proportional to the atmospheric pressure, the pressure at the bottom of the pool will also be reduced

<h3>Learn more </h3>

Isaac Newton's investigations of gravity

brainly.com/question/1747622

Gravitational force

brainly.com/question/7955425

increase the gravitational force between two objects

brainly.com/question/2306824

You might be interested in
A 14000N car traveling at 25m/s rounds a curve of radius 200m. Find the following: a. The centripetal acceleration of the car.
tamaranim1 [39]

Answer:

Explanation:

Given

Weight of car W=14,000\ N

mass of car m=\frac{14,000}{9.8}=1428.57\ N

velocity of car v=25\ m/s

radius r=200\ m

(a)Centripetal acceleration is given by

a_c=\frac{v^2}{r}

a_c=\frac{25^2}{200}

a_c=3.125\ m

(b)Force that provide centripetal acceleration

F=F_c=\frac{mv^2}{r}

F=\frac{1428.57\times 25^2}{200}

F=4464.285\ N

(c)Friction force between car and tires is given by

=\mu N

where \mu=coefficient of static friction

N=normal reaction

Centripetal force will balance the friction force

F_c=F_r

4464.285=\mu \times 1428.57\times 9.8

\mu =0.318

6 0
2 years ago
Read 2 more answers
Some compounds are classified as acids or bases . The ph scale shows how acidic or how basic these compounds are the lower the p
lianna [129]

the answer could be (very basic) since options arent given

8 0
2 years ago
A curtain hangs straight down in front of an open window. A sudden gust of wind blows past the window; and the curtain is pulled
VikaD [51]

Answer:

option B.

Explanation:

The correct answer is option B.

The phenomenon of the curtains to pull out of the window can be explained using Bernoulli's equation.

According to Bernoulli's Principle when the speed of the moving fluid increases the pressure within the fluid decrease.

When wind flows in the outside window the pressure outside window decreases and pressure inside the room is more so, the curtain moves outside because of low pressure.

3 0
2 years ago
Notice that in each conversion factor the numerator equals the denominator when units are taken into account. A common error in
navik [9.2K]

Answer:

he factor for the temporal part 1.296 107 s² = h²

 m / s² = 12960 km / h²

Explanation:

This is a unit conversion exercise.

In the unit conversion, the size of the object is not changed, only the value with respect to which it is measured is changed, for this reason in the conversion the amount that is in parentheses must be worth one.

In this case, it is requested to convert a measure km/h²

Unfortunately, it is not clearly indicated what measure it is, but the most used unit in physics is   m / s² , which is a measure of acceleration. Let's cut this down

the factor for the distance is 1000 m = 1 km

the factor for time is 3600 s = 1 h

let's make the conversion

        m / s² (1km / 1000 m) (3600 s / 1h)²

note that as time is squared the conversion factor is also squared

        m / s² = 12960 km / h²

the factor for the temporal part 1.29 107 s² = h²

6 0
2 years ago
A certain resistor dissipates 0.5 W when connected to a 3 V potential difference. When connected to a 1 V potential difference,
Stels [109]

Answer:

<h2>0.056 W</h2>

Explanation:

Power = IV

From ohms law we know that

V= IR\\\\I= \frac{V}{R} \\\\Power= \frac{V}{R}*V\\\\Power= \frac{V^2}{R}

Given data

P1 = 0.5 Watt

P2 = ?

V1= 3 Volts

V2= 1 Volt

Thus we can solve for the power dissipated as follows

P1= \frac{V1^2}{R1}\\\\P2= \frac{V2^2}{R2}

\frac{P1}{P2} = \frac{V1^2}{V2^2}\\\\ P2=\frac{ V2^2}{ V1^2} *P1\\\\ P2=\frac{ 1^2}{ 3^2} *0.5= 0.055= 0.056 W

<em>The  resistor will dissipate 0.056 Watt</em>

7 0
2 years ago
Other questions:
  • A plant blossoms with violet-colored flowers. The flowers appear violet because they absorb all light rays except for____ rays.
    9·2 answers
  • A sample of gas has a volume of 215 cm3 at 23.5 °c and 84.6 kpa. what volume (cm3 will the gas occupy at stp
    12·1 answer
  • Stu wanted to calculate the resistance of a light bulb connected to a 4.0 V battery, with a resulting current of 0.5 A. He used
    15·2 answers
  • You are driving to the grocery store at 20 m/s. You are 110m from an intersection when the traffic light turns red. Assume that
    14·1 answer
  • An OTR is removing electrodes from a client who has just received iontophoresis. Within several minutes of removing the electrod
    8·1 answer
  • When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportional t
    15·1 answer
  • A group of students must conduct an experiment to determine how the location of an applied force on a classroom door affects the
    13·1 answer
  • Select the correct answer from the drop-down menu. A box contains shirts in two different colors and two different sizes. The nu
    14·2 answers
  • A black, totally absorbing piece of cardboard of area A = 1.7 cm2 intercepts light with an intensity of 8.1 W/m2 from a camera s
    11·2 answers
  • Table C. The Effects of a Magnet on Electric Current
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!