Solution: The correct order is: C, A, B
The statement of the problem:
How can we prove Earth is round and calculate its circumference?
Hypotheis:
If the sun casts shadows at different angles at the same time of day in different places, we can determine how much Earth curves.
If the Earth was flat, the angle measured at different places at the same time of the day would be same.
Observation:
In Syene, the sun's rays are vertical at noon. At the same time in Alexandria, the rays are 7.2 degrees from the vertical.
Answer:C
Explanation:
Mass energy of hydrogen fusing into helium
Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work
Answer: B. The gravitational field strength of Planet X is Wx/m.
Explanation:
Weight is a force, and as we know by the second Newton's law:
F = m*a
Force equals mass times acceleration.
Then if the weight is:
Wx, and the mass is m, we have the equation:
Wx = m*a
Where in this case, a is the gravitational field strength.
Then, isolating a in that equation we get:
Wx/m = a
Then the correct option is:
B. The gravitational field strength of Planet X is Wx/m.
The job that the fan is designed and built to do is to convert the electrical energy it uses into the kinetic (motion) energy of moving air.
I can't really guarantee that it accomplishes that with MOST of the electrical energy it uses, because I don't know how efficient your fan is. For example, if it's a really old fan, and one blade has the end broken off, and a lot of dust and mosquitoes have gotten into the motor, and it shakes and vibrates and makes a lot of noise when it's running, then it's converting a lot of the electrical energy into thermal energy (it gets hot when it runs) and some into sound energy too.
If you can live without the word "most" in the question, then we can assume that the fan is well designed and running like a top, and the answer is definitely choice-B .