answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lilavasa [31]
1 year ago
5

Which of the following best describes a hypothesis?

Physics
2 answers:
professor190 [17]1 year ago
6 0

Answer:

B. A possible answer to a scientific question

Explanation:

It's usually a possible or testable explanation made on the basis of limited evidence as a starting point for further investigation.

ololo11 [35]1 year ago
4 0
I am 99% sure it is B :)
You might be interested in
two people, each with a mass of 70 kg, are wearing inline skates and are holding opposite ends of a 15m rope. One person pulls f
Zina [86]

Answer:

7.75 s

Explanation:

Newton's second law:

∑F = ma

35 N = (70 kg) a

a = 0.5 m/s²

Given v₀ = 0 m/s and Δx = 15 m:

Δx = v₀ t + ½ at²

(15 m) = (0 m/s) t + ½ (0.5 m/s²) t²

t = 7.75 s

5 0
2 years ago
In 2014, the Rosetta space probe reached the comet Churyumov Gerasimenko. Although the comet's core is actually far from spheric
Viktor [21]

To solve this problem we will apply the concepts related to gravity according to the Newtonian definitions. From finding this value we will use the linear motion kinematic equations to find the time. Our values are

Comet mass M = 1.0*10^{13} kg

Radius r = 1.6km = 1600 m

Rock was dropped from a height 'h' from surface = 1m

The relation for acceleration due to gravity of a body of mass 'm' with radius 'r' is

g = \frac{GM}{R^2}

Where G means gravitational universal constant and M the mass of the planet

g = \frac{(6.67408*10^{-11})(1*10^{13})}{1600^2}

g = 2.607*10^{-4} m/s^2

Now calculate the value of the time

h = \frac{1}{2} gt^2

t = \sqrt{\frac{2h}{g}}

t = \sqrt{\frac{2(1)}{2.607*10^{-4}}}

t = 87.58s

The time taken for the rock to reach the surface is t = 87.58s

8 0
1 year ago
Cass is walking her dog (Oreo) around the neighborhood. Upon arriving at Calina's house (a friend of Oreo's), Oreo turns part mu
MArishka [77]

Answer:

Horizontal component: F_x = 58\ N

Vertical component: F_y = 33.5\ N

Explanation:

To find the horizontal and vertical components of the force, we just need to multiply the magnitude of the force by the cosine and sine of the angle with the horizontal, respectively.

Therefore, for the horizontal component, we have:

F_x = F * cos(angle)

F_x = 67 * cos(30)

F_x = 58\ N

For the vertical component, we have:

F_y = F * sin(angle)

F_y = 67 * sin(30)

F_y = 33.5\ N

So the horizontal component of the tension force is 58 N and the vertical component is 33.5 N.

4 0
2 years ago
The length of a wire 2.00 m is measured as 2.02m. What is the percentage error in the measurement?
n200080 [17]

Answer:

1%

Explanation:

Percent error can be found by dividing the absolute error (difference between measure and actual value) by the actual value, then multiplying by 100.

Percent Error=\frac{V_{measured}- V_{true} } {V_{true}} *100

The measured value is 2.02 meters and the actual value is 2.00 meters.

V_{measured}=2.02\\\\V_{true}=2.00

Percent Error=\frac{2.02-2.00}{2.00} *100

First, evaluate the fraction. Subtract 2.00 from 2.02

Percent Error=\frac{0.02}{2.00}*100

Next, divide 0.02 by 2.00

PercentError=0.01 *100

Finally, multiply 0.01 and 100.

Percent  Error=1\\Percent  Error= 1 \%

The percent error is 1%.

6 0
2 years ago
A 4.00-kg mass is attached to a very light ideal spring hanging vertically and hangs at rest in the equilibrium position. The sp
Ahat [919]

Answer:

|v| = 8.7 cm/s

Explanation:

given:

mass m = 4 kg

spring constant k = 1 N/cm = 100 N/m

at time t = 0:

amplitude A = 0.02m

unknown: velocity v at position y = 0.01 m

y = A cos(\omega t + \phi)\\v = -\omega A sin(\omega t + \phi)\\ \omega = \sqrt{\frac{k}{m}}

1. Finding Ф from the initial conditions:

-0.02 = 0.02cos(0 + \phi) => \phi = \pi

2. Finding time t at position y = 1 cm:

0.01 =0.02cos(\omega t + \pi)\\ \frac{1}{2}=cos(\omega t + \pi)\\t=(acos(\frac{1}{2})-\pi)\frac{1}{\omega}

3. Find velocity v at time t from equation 2:

v =-0.02\sqrt{\frac{k}{m}}sin(acos(\frac{1}{2}))

5 0
1 year ago
Read 2 more answers
Other questions:
  • Write a hypothesis for Part II of the lab, which is about the relationship described by F = ma. In the lab, you will use a toy c
    10·2 answers
  • A bullet is fired through a board, 14.0 cm thick, with its line of motion perpendicular to the face of the board. if it enters w
    7·2 answers
  • The acceleration due to gravity on Jupiter is 23.1 m/s2, which is about twice the acceleration due to gravity on Neptune. Which
    7·2 answers
  • While a gymnast is in the air during a leap, which of the following quantities must remain constant for her?A) Angular momentum
    14·1 answer
  • The air within a piston equipped with a cylinder absorbs 565 J of heat and expands from an initial volume of 0.10 L to a final v
    5·1 answer
  • A motorcyclist heading east through a small Iowa town accelerates after he passes a signpost at x=0 marking the city limits. His
    15·1 answer
  • A brick is dropped (zero initial speed) from the roof of a building. The brick strikes the ground in 1.90 s. You may ignore air
    7·1 answer
  • A new planet is discovered beyond Pluto at a mean distance to the sun of 4004 million miles. Using Kepler's third law, determine
    7·1 answer
  • 13. Calculate the total heat energy in Joules needed to convert 20 g of substance X from -10°C to 70°C?
    9·1 answer
  • Your teacher burns a piece of steel wool in class, demonstrating the chemical property, flammability. You are curious to see wha
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!