Answer:
The speed and direction of the apple is 1.448 m/s and 66.65°.
Explanation:
Given that,
Mass of apple = 0.110 kg
Speed = 1.13 m/s
Mass of orange = 0.150 kg
Speed = 1.25 m/s
Suppose we find the final speed and direction of the apple in this case
Using conservation of momentum:
Before:
In x direction,



In y direction = 0
After:
is velocity of the apple in the y direction
is the velocity of the apple in the x direction
Momentum again:
In x direction,



In y-direction,



We need to calculate the speed of apple

Put the value into the formula


We need to calculate the direction of the apple
Using formula of angle

Put the value into the formula


Hence, The speed and direction of the apple is 1.448 m/s and 66.65°.
The question is asking to choose among the following choices that could complete the question about the inertia, base on my research and further investigation, the possible answer would be letter B. Gravity. I hope you are satisfied with my answer and feel free to ask for more
We really can't tell from the given information.
We don't know HOW MUCH Marv enlarged his cannonballs,
or HOW MUCH faster Seymour's balls became.
If we assume that they both, let's say, DOUBLED something,
then Seymour accomplished more, and the destructive capability
of his balls has increased more.
I say that because the destructive capability of a cannonball is
pretty much just its kinetic energy when it arrives and hits the target.
Now, we all know the equation for kinetic energy.
K.E. = (1/2) (mass) (speed-SQUARED) .
We can see right away that if Marv started shooting balls with
double the mass but at the same speed, then they have double
the kinetic energy of the old ones.
But if Seymour started shooting the same balls with double the SPEED,
then they have (2-SQUARED) as much kinetic energy as they used to.
That's 4 times as much destructive capability as before.
So we can say that when it comes to cannons and their balls and
smashing things to bits and terrorizing your opponents, if making
a bigger mess is better, then more mass is better, but more speed
is better-squared.
Answer:
1.25377 m/s²
Explanation:
m = Mass of person
g = Acceleration due to gravity = 9.81 m/s²
= Coefficient of friction
= Slope
From Newton's second law

Applying
to the above equation and 

The acceleration of the same skier when she is moving down a hill is 1.25377 m/s²
Answer:
The range is maximum when the angle of projection is 45 degree.
Explanation:
The formula for the horizontal range of the projectile is given by

The range should be maximum if the value of Sin2θ is maximum.
The maximum value of Sin2θ is 1.
It means 2θ = 90
θ = 45
Thus, the range is maximum when the angle of projection is 45 degree.
If the angle of projection is 0 degree
R = 0
It means the horizontal distance covered by the projectile is zero, it can move in vertical direction.
If the angle of projection is 30 degree.

R = 0.088u^2
If the angle of projection is 45 degree.

R = u^2 / g