The electrical potential energy of a charge q located at a point at potential V is given by

Therefore, if the charge must move between two points at potential V1 and V2, the difference in potential energy of the charge will be

In our problem, the electron (charge e) must travel across a potential difference V. So the energy it will lose traveling from the metal to the detector will be equal to

Therefore, if we want the electron to reach the detector, the minimum energy the electron must have is exactly equal to the energy it loses moving from the metal to the detector:
Rust is a chemical change. Chemical changes are when the substances that make up an object change into other chemicals. For example, rust. What happens is metal and oxygen/water react and create rust. Hope this helps :)
Answer:
6.05 cm
Explanation:
The given equation is
2 aₓ(x-x₀)=( Vₓ²-V₀ₓ²)
The initial head velocity V₀ₓ =11 m/s
The final head velocity Vₓ is 0
The accelerationis given by =1000 m/s²
the stopping distance = x-x₀=?
So we can wind the stopping distance by following formula
2 (-1000)(x-x₀)=[
]
x-x₀=6.05*
m
=6.05 cm
Answer:
34.17°C
Explanation:
Given:
mass of metal block = 125 g
initial temperature
= 93.2°C
We know
..................(1)
Q= Quantity of heat
m = mass of the substance
c = specific heat capacity
c = 4.19 for H₂O in 
= change in temperature
Now
The heat lost by metal = The heat gained by the metal
Heat lost by metal = 
Heat gained by the water = 
thus, we have
= 

⇒ 
Therefore, the final temperature will be = 34.17°C