Answer:
order d> a = e> c> b = f
Explanation:
Pascal's law states that a change in pressure is transmitted by a liquid, all points are transmitted regardless of the form
P₁ = P₂
Using the definition of pressure
F₁ / A₁ = F₂ / A₂
F₂ = A₂ /A₁ F₁
Now we can examine the results
a) F1 = 4.0 N A1 = 0.9 m2 A2 = 1.8 m2
F₂ = 1.8 / 0.9 4
F₂a = 8 N
b) F1 = 2.0 N A1 = 0.9 m2 A2 = 0.45 m2
F₂b = 0.45 / 0.9 2
F₂b = 1 N
c) F1 2.0 N A1 = 1.8 m2 A2 = 3.6 m2
F₂c = 3.6 / 1.8 2
F₂c = 4 N
d) F1 = 4.0N A1 = 0.45 m2 A2 = 1.8 m2
F₂d = 1.8 / 0.45 4.0
F₂d = 16 m2
e) F1 = 4.0 N A1 = 0.45 m2 A2 = 0.9 m2
F₂e = 0.9 / 0.45 4
F₂e = 8 N
f) F1 = 2.0N A1 = 1.8 m2 A2 = 0.9 m2
F₂f = 0.9 / 1.8 2.0
F₂f = 1 N
Let's classify the structure from highest to lowest
F₂d> F₂a = F₂e> F₂c> F₂b = F₂f
I mean the combinations are
d> a = e> c> b = f
Answer:
0.775
Explanation:
The weight of an object on a planet is equal to the gravitational force exerted by the planet on the object:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the object
R is the radius of the planet
For planet A, the weight of the object is

For planet B,

We also know that the weight of the object on the two planets is the same, so

So we can write

We also know that the mass of planet A is only sixty percent that of planet B, so

Substituting,

Now we can elimanate G, MB and m from the equation, and we get

So the ratio between the radii of the two planets is

Answer:
t = 2 s
Explanation:
As we know that fish is pulled upwards with uniform maximum acceleration
then we will have

here we know that maximum possible acceleration of so that string will not break is given as

now we have


now for such acceleration we can use kinematics


t = 2 s
Answer:
-5.1 kg m/s
Explanation:
Impulse is the change in momentum.
Change in momentum= final momentum - initial momentum=m
+m
Plugging in the values= -0.15*24 - (0.15*10) (The motion towards the pitcher is negative as the initial motion is considered to be positive)
Impulse=-5.1 kg m/s (-ve means that it is the impulse towards the pitcher)