Answer: 
Explanation:
According to the described situation we have the following data:
Horizontal distance between lily pads: 
Ferdinand's initial velocity: 
Time it takes a jump: 
We need to find the angle
at which Ferdinand jumps.
In order to do this, we first have to find the <u>horizontal component (or x-component)</u> of this initial velocity. Since we are dealing with parabolic movement, where velocity has x-component and y-component, and in this case we will choose the x-component to find the angle:
(1)
(2)
(3)
On the other hand, the x-component of the velocity is expressed as:
(4)
Substituting (3) in (4):
(5)
Clearing
:

This is the angle at which Ferdinand the frog jumps between lily pads
The amount of work done can be solved using the formula:
Work = Force x Distance = Change in kinetic energy
Kinetic energy can be solved using the formula: KE = (1/2)*m*v^2
So, change in kinetic energy = (1/2)*m*(Vf)^2 - (1/2)*m*(Vo)^2
Where:
Vf = final velocity = 90 kph = 25 m/s
Vo = initial velocity = 72 kph = 20 m/s
substituting the given values:
Work = (1/2)*2500*(25^2) - (1/2)*2500*(20^2) = 281250 J, which can also be expressed as 2.8 x 10^5 Joules.
Among the choices, the correct answer is A.
Answer:
Neutrons
Explanation:
Neutrons are subatomic particles that are electrically neutral and possess no charge in them.
Answer:
T = g μ_s ( M+m )
78.4 N
Explanation:
When both of them move with the same acceleration , small box will not slip over the bigger one. When we apply force on the lower box, it starts moving with respect to lower box. So a frictional force arises on the lower box which helps it too to go ahead . The maximum value that this force can attain is mg μ_s . As a reaction of this force, another force acts on the lower box in opposite direction .
Net force on the lower box
= T - mg μ_s = M a ( a is the acceleration created by net force in M )
Considering force on the upper box
mg μ_s = ma
a = g μ_s
Put this value of a in the equation above
T - m gμ_s = M g μ_s
T = mg μ_s + M g μ_s
= g μ_s ( M+m )
2 )
Largest tension required
T = 9.8 x .50 x ( 10+6 )
= 78.4 N
Answer:
The workdone is 
Explanation:
The free body diagram is shown on the first uploaded image
From the question we are given that
The force is on the force gauge 
The distance that Magnus pulled the bus
Generally the workdone by the tension force on Magnus is


This negative sign show that is tension force is in the opposite direction to Magnus movement (i.e the movement of the bus )
Substituting value we have

