answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arada [10]
2 years ago
9

2 boxes connected by a plus sign hold Wave 1 on top and Wave 2 on bottom. The crests of Wave 1 line up with the troughs of Wave

2. 2 curved lines connect these boxes with a third box showing the 2 waves superimposed. An arrow leads from this box to another box labeled Resulting Wave with a wave having twice the amplitude of Waves 1 or 2.
Does the resulting wave demonstrate destructive interference? Explain your answer.
Physics
2 answers:
loris [4]2 years ago
6 0

Answer:

No, the resulting wave in the diagram does not demonstrate destructive interference. The resulting wave in the diagram shows a bigger wave than Wave 1 or Wave 2. If it demonstrated destructive interference, it would be a smaller wave or a horizontal line. With destructive interference, waves break down to form a smaller wave, or cancel each other out, resulting in no wave formation.

Zanzabum2 years ago
3 0

Answer:

Sample Response: No, the resulting wave in the diagram does not demonstrate destructive interference. The resulting wave in the diagram shows a bigger wave than Wave 1 or Wave 2. If it demonstrated destructive interference, it would be a smaller wave or a horizontal line. With destructive interference, waves break down to form a smaller wave, or cancel each other out, resulting in no wave formation.

Explanation:

that's the sample answer on edge. here are the questions they ask you if you want to make your own

What did you include in your response? Check all that apply.

The diagram of the resulting wave does not demonstrate destructive interference.

With destructive interference, waves break each other down to form a smaller wave, or cancel each other out, resulting in no wave formation.

No wave formation is represented by a horizontal line.

You might be interested in
"For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
ELEN [110]

Answer:

Explanation:

Given that:

For a first order instrument with a sensitivity of .4 mV/K

constant c  = 25 ms = 25 × 10⁻³ s

The initial temperature T_1 = 273 K

The final temperature T_2 = 473 K

The initial volume = 0.4 mV/K × 273 K = 109.2 V

The final volume =  0.4 mV/K × 473 K =  189.2 V

the instrument’s response as a function of time for a sudden temperature increase can be computed as follows:

Let consider y to be the function of time i.e y(t).

So;

y(t) = 109.2  + (189.2 - 109.2)( 1 - \mathbf{e^{-t/c}})mV

y(t) = (109.2 +  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

Plot the response y(t) as a function of time.

The plot of y(t) as a function of time can be seen in the diagram  attached below.

What are the units for y(t)?

The unit for y(t) is mV.

Find the 90% rise time for y(t90) and the error fraction,

The 90% rise time for y(t90) is as follows:

Initially 90% of 189.2 mV = 0.9 ×  189.2 mV

=  170.28 mV

170.28 mV = (109.2 +  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

170.28 mV - 109.2 mV = 80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

61.08 mV =  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

0.7635  mV = ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

t = 1.44 × 25  × 10⁻³ s

t = 0.036 s

t = 36 ms

The error fraction = \dfrac{189.2-170.28  }{189.2}

The error fraction = 0.1

The error fraction = 10%

8 0
2 years ago
The note created by a flute will increase the speed of sound increases. When a marching band goes outside on a cold day, what wo
alexgriva [62]

A).

It would decrease because the speed of sound and temperature are proportional.

4 0
2 years ago
Read 2 more answers
1. Describe the methods by which an electric potential develops in primary cells and dry cells.
Andreyy89

Answer:

In primary cells, an electric potential develops through chemical action between the plates within the cell. Positively charged ions of zinc enter the acid and free electrons released from zinc atoms collect on the zinc plate, which results in a negative charge. At the same time, positively charged ions of hydrogen from the acid remove free electrons from the copper plate, which becomes positively charged. Through a conducting material connecting the plates, free electrons move from the zinc plate to the copper plate as long as the chemical reaction lasts.

Dry cells also develop electric potential via chemical actions within the cell. Free electrons removed from the carbon rod collect on a zinc can. The rod exhibits a positive charge and the can becomes negatively charged; this allows for an electric potential to develop between these two items. Through a conducting material connecting the can to the rod, free electrons move from the can to the rod as long as the conducting path exists.

Electric generators develop an electric potential via magnetic induction. Moving a conducting rod through a magnetic field that exists between the poles of a horseshoe magnet causes an electric potential to be set up in the rod. Free electrons move through this rod from one end to the other for as long as movement of the rod is maintained. The direction of this movement depends on whether the rod is moved across the lines of force in the magnetic field in either the opposite direction or the same direction. Generators usually consist of multiple conductors mounted on a cylinder that rotates in a magnetic field.

Thermocouples utilize heat to develop an electric potential. Two strips of different metals are connected at one end to form a junction and the other ends are kept apart. A heat source is applied to the junction; this causes each metal strip’s temperature to rise at the junction. The free ends aren’t as hot and electric charges are produced at these free ends. Because the strips consist of different materials, there's a difference of potential between these free ends; when connected by a conducting wire, the electrons can move through the pathway. The voltage that's produced will become greater as the difference in temperature between the free ends and the junction increases.

a. Increase

b. Decrease

c. Decrease

Since 1 Btu = 0.293 Wh, dividing the given amount of Wh by 0.293 will convert this amount into Btu. Therefore, 0.8 ÷ 0.293 = 2.73 Btu

365 days × 10 hours × 40 W = 146,000 Wh or 146 kWh

Explanation:

Penn Foster

6 0
2 years ago
An unstretched spring has a length of 0.30 m. When the spring is stretched to a total length of 0.60 m, it supports traveling wa
IceJOKER [234]

Explanation:

Below is an attachment containing the solution

7 0
2 years ago
One end of a string is fixed. An object attached to the other end moves on a horizontal plane with uniform circular motion of ra
sveticcg [70]

Answer:

If both the radius and frequency are doubled, then the tension is increased 8 times.

Explanation:

The radial acceleration (a_{r}), measured in meters per square second, experimented by the moving end of the string is determined by the following kinematic formula:

a_{r} = 4\pi^{2}\cdot f^{2}\cdot R (1)

Where:

f - Frequency, measured in hertz.

R - Radius of rotation, measured in meters.

From Second Newton's Law, the centripetal acceleration is due to the existence of tension (T), measured in newtons, through the string, then we derive the following model:

\Sigma F = T = m\cdot a_{r} (2)

Where m is the mass of the object, measured in kilograms.

By applying (1) in (2), we have the following formula:

T = 4\pi^{2}\cdot m\cdot f^{2}\cdot R (3)

From where we conclude that tension is directly proportional to the radius and the square of frequency. Then, if radius and frequency are doubled, then the ratio between tensions is:

\frac{T_{2}}{T_{1}} = \left(\frac{f_{2}}{f_{1}} \right)^{2}\cdot \left(\frac{R_{2}}{R_{1}} \right) (4)

\frac{T_{2}}{T_{1}} = 4\cdot 2

\frac{T_{2}}{T_{1}} = 8

If both the radius and frequency are doubled, then the tension is increased 8 times.

5 0
2 years ago
Other questions:
  • Two movers use a rope system to lift a box to a third-story apartment. they do 1,200 j of work on the rope system, and the rope
    8·2 answers
  • Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
    9·1 answer
  • A crate is placed on an adjustable, incline board. the coefficient of static friction between the crate and the board is 0.29.
    11·1 answer
  • If the intensity level by 15 identical engines in a garage is 100 dB, what is the intensity level generated by each one of these
    10·1 answer
  • The connection between gravity and orbits enables astronomers to measure the __________ of stars and planets.
    5·1 answer
  • Two parallel metal plates are at a distance of 8.00 m apart.The electric field between the plates is uniform directed towards th
    5·1 answer
  • Index of refraction
    15·1 answer
  • a horse gallops a distance of 60 meters in 15 seconds. then, he stops to eat some grass for 20 seconds. next, he trots for 25 se
    5·1 answer
  • On average, both arms and hands together account for 13% of a person's mass, while the head is 7.0% and the trunk and legs accou
    8·1 answer
  • A water park is designing a new water slide that finishes with the rider flying horizontally off the bottom of the slide. The sl
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!