<span>Answer:
Pressure is always density * gravity * depth
P = 1000 kg/m^3 * 9.81 m/s^2 * 221 m
P = 2168010 Pa</span>
Answer:
T = 693.147 minutes
Explanation:
The tank is being continuously stirred. So let the salt concentration of the tank at some time t be x in units of kg/L.
Therefore, the total salt in the tank at time t = 1000x kg
Brine water flows into the tank at a rate of 6 L/min which has a concentration of 0.1 kg/L
Hence, the amount of salt that is added to the tank per minute = 
Also, there is a continuous outflow from the tank at a rate of 6 L/min.
Hence, amount of salt subtracted from the tank per minute = 6x kg/min
Now, the rate of change of salt concentration in the tank = 
So, the rate of change of salt in the tank can be given by the following equation,

or, 
or, T = 693.147 min (time taken for the tank to reach a salt concentration
of 0.05 kg/L)
To solve this problem we will use the kinematic equations of angular motion, starting from the definition of angular velocity in terms of frequency, to verify the angular displacement and its respective derivative, let's start:



The angular displacement is given as the form:
In the equlibrium we have to
and in the given position we have to

Derived the expression we will have the equivalent to angular velocity

Replacing,

Finally

Therefore the maximum angular displacement is 9.848°
Answer:
Magnetic field at the center of the loop 
Explanation:
It is given that total length of wire is 2 m and number of circular loop is 5 turns.
Therefore ,

We know , magnetic field at the center of loop is given by :

Putting all values in above equation we get :

Hence , this is the required solution.
Answer:
The airplane should release the parcel
m before reaching the island
Explanation:
The height of the plane is
, and its speed is v=150 m/s
When an object moves horizontally in free air (no friction), the equation for the y measured with respect to ground is
[1]
And the distance X is
x = V.t [2]
Being t the time elapsed since the release of the parcel
If we isolate t from the equation [1] and replace it in equation [2] we get

Using the given values:

x =
m