Answer:
An annular Solar Eclipse
Explanation:
Solar eclipse is an event that occurs naturally on Earth when the moon in its orbit is positioned between the Earth and the Sun.Solar Eclipse can be total ,partial or annular.In the total solar eclipse, the moon completely covers the sun where as in the annular solar eclipse the moon covers the center of the Sun leaving outer edges of the Sun to be visible forming the<em> ring of fire.</em>In partial solar eclipse the Earth moves through the lunar penumbra as the moon moves between Earth and Sun.The moon blocks only some parts of the solar disk.Annular solar eclipse happens during new moon and the moon is at its farthest position from the Earth called Apogee.
Answer:
D. "The net force is zero, so the acceleration is zero"
Explanation:
edge 2020
The right answer for the question that is being asked and shown above is that: "<span>C) The clouds of dust and gases rotate at high speed > The clouds condense > The sun is born > The planets are born " This is the </span><span>diagram that best represents the steps in the formation of planets</span>
<h3>Question:</h3>
A 2.0-cm length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x = 5.0m on the x-axis.
<h3>
Answer:</h3>
1.6nT [in the negative z direction]
<h2>
Explanation:</h2>
The magnetic field, B, due to a distance of finite value b, is given by;
B = (μ₀IL) / (4πb
) -----------(i)
Where;
I = current on the wire
L = length of the wire
μ₀ = magnetic constant = 4π × 10⁻⁷ H/m
From the question,
I = 20A
L = 2.0cm = 0.02m
b = 5.0m
Substitute the necessary values into equation (i)
B = (4π × 10⁻⁷ x 20 x 0.02) / (4π x 5.0
)
B = (10⁻⁷ x 20 x 0.02) / (5.0
)
B = (10⁻⁷ x 20 x 0.02) / (5.0
)
B = (10⁻⁷ x 20 x 0.02) / (25.0)
B = 1.6 x 10⁻⁹T
B = 1.6nT
Therefore, the magnetic field at the point x = 5.0m on the x-axis is 1.6nT.
PS: Since the current is directed in the positive y direction, from the right hand rule, the magnetic field is directed in the negative z-direction.
Answer:
0.9378
Explanation:
Weight (W) of the rider = 100 kg;
since 1 kg = 9.8067 N
100 kg will be = 980.67 N
W = 980.67 N
At the slope of 12%, the angle θ is calculated as:

The drag force D = Wsinθ

where;

A = 0.9 m²
V = 15 m/s
∴
Drag coefficient 

