answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novosadov [1.4K]
1 year ago
5

If gravity between the Sun and Earth suddenly vanished, Earth would continue moving in

Physics
1 answer:
Ksenya-84 [330]1 year ago
6 0

Answer:

Earth would continue moving by uniform motion, with constant velocity, in a straight line

Explanation:

The question can be answered by using Newton's first law of motion, also known as law of inertia, which states that:

"an object keeps its state of rest or of uniform motion in a straight line unless acted upon by an external net force different from zero"

This means that if there are no forces acting on an object, the object stays at rest (if it was not moving previously) or it continues moving with same velocity (if it was already moving) in a straight line.

In this problem, the Earth is initially moving around the Sun, with a certain tangential velocity v. When the Sun disappears, the force of gravity that was keeping the Earth in circular motion disappears too: therefore, there are no more forces acting on the Earth, and so by the 1st law of Newton, the Earth will continue moving with same velocity v in a straight line.

You might be interested in
According to Newton's Law of Universal Gravitation, which of the following would cause the attractive force between a planet and
vladimir1956 [14]

Answer:

it is either a or c

Explanation:

4 0
2 years ago
An application of this principle is that a line mounted on transparent slide casts the same diffraction pattern as a dark film w
kifflom [539]

Explanation:

It is given that,

The distance between the first spot and the central minimum is, s = 0.007 cm

Length, l = 12 m

Wavelength, \lambda=6\times 10^{-7}\ m

We need to find the width of the hair. Using the condition of diffraction pattern as :

s=\dfrac{m\lambda l}{d}, d is the width of the hair

d=\dfrac{m\lambda l}{s}

d=\dfrac{1\times 6\times 10^{-7}\times 12}{0.007}

d = 0.00102

or

d=1.02\times 10^{-3}\ m

So, the width of the hair is 1.02\times 10^{-3}\ m. Hence, this is the required solution.

8 0
2 years ago
The box leaves position x=0x=0 with speed v0v0. The box is slowed by a constant frictional force until it comes to rest at posit
const2013 [10]

Answer:

fr = ½ m v₀²/x

Explanation:

This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.

The best way to solve this exercise is to use the energy work theorem

            W = ΔK

Where work is defined as the product of force by distance

           W = fr x cos 180

The angle is because the friction force opposes the movement

          Δk =K_{f} –K₀

          ΔK = 0 - ½ m v₀²

We substitute

         - fr x = - ½ m v₀²      

           fr = ½ m v₀²/x

8 0
2 years ago
The block in the diagram below is AT REST. However, the tension in the cable is not the only thing holding the block back. Stati
Vedmedyk [2.9K]

Answer:

The  tension in the rope is 229.37 N.

Explanation:

Given:

Mass of the block is, m=33.2\ kg

Coefficient of static friction is, \mu = 0.214

Angle of inclination is, \theta = 31.5°

Draw a free body diagram of the block.

From the free body diagram, consider the forces in the vertical direction perpendicular to inclined plane.

Forces acting are mg\cos \theta and normal N. Now, there is no motion in the direction perpendicular to the inclined plane. So,

N=mg\cos \theta\\N=(33.2)(9.8)\cos (31.5)\\N=277.415\ N

Consider the direction along the inclined plane.

The forces acting along the plane are mg\sin \theta and frictional force, f, down the plane and tension, T, up the plane.

Now, as the block is at rest, so net force along the plane is also zero.

T=mg\sin \theta+f\\T=mg\sin \theta +\mu N\\T= (33.2)(9.8)(\sin (31.5)+(0.214\times 277.415)\\T= 170+59.37\\T=229.37\ N

Therefore, the  tension in the rope is 229.37 N.

3 0
1 year ago
a falling skydiver slows from a speed of 52 m/s to 8 m/s in 0.8 sec as the parachute opens. what is the diver's acceleration and
Cloud [144]
I found the answers here. Hope this helps you! https://1.cdn.edl.io/sJTle6yxt3qVq7jHfdHRZJ3Xogj7ps6swBO9umNcZ6PO3SMN.docx
8 0
2 years ago
Other questions:
  • A snowstorm was predicted in Chicago. Identify the possible upper air temperature, surface temperature, and air pressure of Chic
    11·2 answers
  • The amplitude of a lightly damped harmonic oscillator decreases from 60.0 cm to 40.0 cm in 10.0 s. What will be the amplitude of
    5·1 answer
  • An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m.how much work
    5·1 answer
  • myron is almost late for class and he is running quickly to arrive before the professor begins lecturing as he listen to the pro
    11·1 answer
  • Cheetahs, the fastest of the great cats, can reach 45 mph in 2.0 sec starting from rest. Assuming that they have constant accele
    6·1 answer
  • Maria throws an apple vertically upward from a height of 1.3 m with an initial velocity of +2.8 m/s. Will the apple reach a frie
    13·1 answer
  • In an experiment to illustrate the propagation of sound through fluids, identical sound sources emitting at 440 Hz are used to p
    13·1 answer
  • Find the work done in pumping gasoline that weighs 6600 newtons per cubic meter. A cylindrical gasoline tank 3 meters in diamete
    7·1 answer
  • The natural direction of heat flow between two reservoirs depends on ....​
    11·1 answer
  • A tennis ball travelling at a speed of 46m/s with a mass of 58kg. Calculate the kinetic<br>energy​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!