answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kow [346]
1 year ago
7

Two parallel co-axial disks are floating in deep space (far from sun and planets). Each disk is 1 meter in diameter and the disk

s are spaced 5 meters apart. One of the disks is a blackbody at a fixed temperature of 5500 K. The other disk is painted with a high temperature white paint on both sides. Estimate the temperature of the white painted disk. List your assumptions and explain your reasoning.
Physics
1 answer:
HACTEHA [7]1 year ago
3 0

Answer:

T₂ = 5646 K

Explanation:

Let's start by finding the power received by the first disc, for this we use Stefan's law

          P = σ. A e T⁴

Where next is the Stefam-Bolztmann constant with value 5,670 10-8 W / m² K⁴, A is the area of ​​the disk, T the absolute temperature and e the emissivity that for a black body is  1

The intensity is defined as the amount of radiation that arrives per unit area. For this we assume that the radiation expands uniformly in all directions, the intensity is

           I = P / A

Writing this expression for both discs

          I₁ A₁ = I₂ A₂

          I₂ = I₁ A₁ / A₂

The area of ​​a sphere is

          A = 4π r²

           I₂ = I₁ (r₁ / r₂)²

          r₂ = r₁ ± 5

          I₁ = I₂ ( (r₁ ± 5)/r₁)²

.

        Let's write the Stefan equation

         P / A = σ e T⁴

          I = σ e T⁴

This is the intensity that affects the disk, substitute in the intensity equation

         σ e₁ T₁⁴ = σ e₂ T₂⁴ (r₂ / r₁)²

The first disc indicates that it is a black body whereby e₁ = 1, the second disc, as it is painted white, the emissivity is less than 1, the emissivity values ​​of the white paint change between 0.90 and 0.95, for this calculation let's use 0.90 matt white

        e₁ T₁⁴ = T₂⁴   (r1 + 5)²/r₁²

       T₁ = T₂  {(e₂/e₁)}^{1/4}  √(1 ± 1/ r₁)  

If we assume that r₁ is large, which is possible since the disks are in deep space, we can expand the last term

           (1 ±x) n = 1 ± n x

Where x = 5 / r₁ << 1

We replace

          T₁ = T₂ {(e₂/e₁)}^{1/4}  (1 ± ½   5/r1)

           T₁ = T₂ {(e₂)}^{1/4}   (1 ± 5/2 1/r1)

If the discs are far from the star, they indicate that they are in deep space, the distance r₁ from being grade by which we can approximate; this is a very strong approach

              T₁ = T₂  {(e₂)}^{1/4} ¼

              T<u>₁</u> = T₂  0.90.9^{1/4}

               5500 = T₂  0.974

               T₂ = 5646 K

You might be interested in
Light with a wavelength of 495 nm is falling on a surface and electrons with a maximum kinetic energy of 0.5 eV are ejected. Wha
devlian [24]

Answer:

To increase the maximum kinetic energy of electrons to 1.5 eV, it is necessary that ultraviolet radiation of 354 nm falls on the surface.

Explanation:

First, we have to calculate the work function of the element. The maximum kinetic energy as a function of the wavelength is given by:

K_{max}=\frac{hc}{\lambda}-W

Here h is the Planck's constant, c is the speed of light, \lambda is the wavelength of the light and W the work function of the element:

W=\frac{hc}{\lambda}-K_{max}\\W=\frac{(4.14*10^{-15}eV\cdot s)(3*10^8\frac{m}{s})}{495*10^{-9}m}-0.5eV\\W=2.01eV

Now, we calculate the wavelength for the new maximum kinetic energy:

W+K_{max}=\frac{hc}{\lambda}\\\lambda=\frac{hc}{W+K_{max}}\\\lambda=\frac{(4.14*10^{-15}eV\cdot s)(3*10^8\frac{m}{s})}{2.01eV+1.5eV}\\\lambda=3.54*10^{-7}m=354*10^{-9}m=354nm

This wavelength corresponds to ultraviolet radiation. So, to increase the maximum kinetic energy of electrons to 1.5 eV, it is necessary that ultraviolet radiation of 354 nm falls on the surface.

8 0
2 years ago
A worker pushes a 7 kg shipping box along a roller track. Assume friction is small enough to be ignored because of the rollers.
Bingel [31]

Answer:

a) Fₓ = 23.5 N

b) Net force = Fₓ

Explanation:

An image of the question as described is attached to this solution.

From the image attached, the forces acting on the box include the weight of the box, the normal reaction of the surface on the box, the applied force on the box and the Frictional force opposing the motion of the box (which is negligible and equal to 0)

a) From the diagram, the horizontal component of the force is

Fₓ = 25 cos 20° = 23.49 N = 25 N

b) Again, from the diagram attached, doing a force balance on the box, in the horizontal direction, we obtain

Net force = Fₓ - Frictional force

But frictional force is 0 N

Net force = Fₓ

Hope this Helps!!!

6 0
2 years ago
About 65 million years ago an asteroid struck Earth in the area of the Yucatán Peninsula and wiped out the dinosaurs and many ot
9966 [12]

Answer:

2.44156\times 10^{13}\ m^3

29010.53917 m

Explanation:

\rho = Density of asteroid = 2 g/cm³

V = Volume

d = Diameter = 10 km

r = Radius = \dfrac{d}{2}=\dfrac{10}{2}=5\ km

v = Velocity = 11 km/s

H_v = Heat vaporization of water = 2.26\times 10^6\ J/kg

\Delta T = Change in temperature = 100-20

Mass is given by

m=\rho V\\\Rightarrow m=\rho\dfrac{4}{3}\pi r^3\\\Rightarrow m=2000\dfrac{4}{3}\times \pi\times 5000^3\\\Rightarrow m=1.0472\times 10^{15}\ kg

The kinetic energy is

K=\dfrac{1}{2}mv^2\\\Rightarrow K=\dfrac{1}{2}1.0472\times 10^{15}\times 11000^2\\\Rightarrow K=6.33556\times 10^{22}\ J

Heat is given by

Q=mc\Delta T+mH_v\\\Rightarrow 6.33556\times 10^{22}=m\times (4186\times (100-20)+2.26\times 10^6)\\\Rightarrow m=\dfrac{ 6.33556\times 10^{22}}{4186\times (100-20)+2.26\times 10^6}\\\Rightarrow m=2.44156\times 10^{16}\ kg

Mass of water is 2.44156\times 10^{16}\ kg

Volume is \dfrac{2.44156\times 10^{16}}{10^3}=2.44156\times 10^{13}\ m^3

Amount of water is 2.44156\times 10^{13}\ m^3

If it were a cube

h=V^{\dfrac{1}{3}}\\\Rightarrow h=(2.44156\times 10^{13})^{\dfrac{1}{3}}\\\Rightarrow h=29010.53917\ m

The height of the water would be 29010.53917 m

4 0
1 year ago
The power ratings of several motors are listed in the table.
storchak [24]
<span>The power ratings of several motors are listed in the table. 
Motor Power
Brandy X 7,460
Brandy Y 7,650
Brandy Z 7,580


An advertising agency writes marketing material for a new motor (Brand W) that has a power rating of 7,640 W. Which statement comparing the motors can they truthfully use?

I believe the answer is </span><span>Brand W motor does more work each second than Brand X or Brand Z.</span>
4 0
2 years ago
Read 2 more answers
A particle leaves the origin with an initial velocity v → = (3.00iˆ) m/s and a constant acceleration a → = (−1.00iˆ − 0.500jˆ) m
tatiyna

Answer:

the position vector (x,y) will be (1.5 m,-2.25 m) and the velocity vector (vx,vy) will be ( 0 m/s , -1.5 m/s) when x reaches its maximum x coordinate

Explanation:

Since the velocity is related with the acceleration and coordinates through

vx²=v₀x²+2*ax*x

where

vx = velocity in the x direction

v₀x = initial velocity in the x direction = 3 m/s

ax = acceleration in the x direction = −1.00 m/s²

x= coordinates in the x-axis

when x reaches its maximum coordinate , then vx=0

thus

vx²=v₀x²+2*ax*x

0 = (3 m/s)² + 2* (−1.00 m/s²)*x

x= 1.5 m

also for the time t

vx = v₀x + ax*t → t= (vx-v₀x)/ax = (0- 3 m/s)/  (−1.00 m/s²) = 3 seconds

for the y coordinates

y = y₀+v₀y*t + 1/2 ay*t²

where

v₀y = initial velocity in the y direction = 0 m/s

ay = acceleration in the x direction = −0.5 m/s²

y= coordinates in the y-axis

y₀= initial coordinate in the y-axis =0

then since y₀=0 and v₀y=0

y = 1/2*ay*t²

y = 1/2*ay*t² = 1/2*(−0.5 m/s²)*(3 s)² = -2.25 m

and

vy=v₀y+ ay*t= 0+(−0.5 m/s²)*(3 s)= (-1.5 m/s)

therefore the position vector (x,y) will be (1.5 m,-2.25 m)

and the velocity vector (vx,vy) will be ( 0 m/s , -1.5 m/s)

7 0
1 year ago
Other questions:
  • Moving water, like that of a river, carries sediment as it moves along its bed. The faster the water flows, the more sediment th
    13·2 answers
  • A standard 1 kilogram weight is a cylinder 51.0 mm in height and 42.0 mm in diameter. Determine the density of the material
    6·1 answer
  • A 96-mH solenoid inductor is wound on a form 0.80 m in length and 0.10 m in diameter. A coil is tightly wound around the solenoi
    12·1 answer
  • A car drives at a constant speed around a banked circular track with a diameter of 136 m . The motion of the car can be describe
    12·2 answers
  • A nonuniform, but spherically symmetric, distribution of charge has a charge density ρ(r) given as follows:
    13·1 answer
  • A viscous liquid is sheared between two parallel disks of radius �, one of which rotates with angular speed Ω, while the other i
    14·1 answer
  • A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion
    5·1 answer
  • . A girl runs and jumps horizontally off a platform 10m above a pool with a speed of 4.0m/s. As soon as she leaves the platform,
    6·1 answer
  • To practice tactics box 13.1 hydrostatics. in problems about liquids in hydrostatic equilibrium, you often need to find the pres
    9·1 answer
  • Init. A
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!