Answer:
Energy absorbing lanyard as per OSHA
Explanation:
Energy absorbing lanyard if working over 6 feet in height so you don't break your back when you fall.
Answer:
a) Fc = 4.15 N, Fi = 435.65 N, (F1)a = 640 N, and F2 = 239.6 N,
b) Ha = 1863.75 N, nfs = 1 , length = 11.8 mm
Explanation:
Given that:
γ= 9.5 kN/m³ = 9500N/m3
b = 6 inches = 0.1524 m
t = 0.0013 mm
d = 2 inches = 0.0508 m
n = 1750 rpm

L = 9 ft = 2.7432 m
Ks = 1.25
g = 9.81 m/s²
a)







b)


dip = 
Answer:
Explanation:
We shall apply Pascal's Law in fluid mechanics
According to it , pressure is transmitted in liquid from one point to another without any change .
25 cm diameter = 12.5 x 10⁻² m radius
Area = 3.14 x (12.5 x 10⁻²)²
= 490.625 x 10⁻⁴ m²
Pressure by vehicle
Force / area
13000 / 490.625 x 10⁻⁴
= 26.497 x 10⁴ Pa
5 cm diameter = 2.5 x 10⁻² radius
area = 3.14 x (2.5 x 10⁻²)²
= 19.625 x 10⁻⁴ m²
If we assume required force F on this area
Pressure = F / 19.625 x 10⁻⁴ Pa
According to Pascal Law
F / 19.625 x 10⁻⁴ = 26.497 x 10⁴
F = 19.625 x 26.497
= 520 N
<span>Assuming pulley is frictionless. Let the tension be ‘T’. See equation below.</span>
<span> </span>
<span>We put a motion detector at </span>one end of the track<span> and put a cart on the track. ... Next, we put a motorized fan on the cart and let it push the cart down the track. ... This is what I would expect based on the velocity graph, since </span>acceleration<span> equals the slope of the velocity graph, which remains</span>constant<span> in time.</span>