answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
2 years ago
12

Robin Hood wishes to split an arrow already in the bull's-eye of a target 40 m away.

Physics
1 answer:
tamaranim1 [39]2 years ago
4 0

Answer:

5.843 m

Explanation:

suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.

lets consider that horizontal motion

distance = speed * time

time = 40/ 37 = 1.081 s

arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.

applying motion equation

(assume g = 10 m/s²)

s=ut+\frac{1}{2}*gt^{2}  \\= 0+\frac{1}{2}*10*1.081^{2}\\= 5.843 m

Arrow misses the target by 5.843m ig the arrow us split horizontally

You might be interested in
Step 1, when solving a two dimensional, multi-charge problem, is to define the vectors. Please identify the next five steps, in
Masja [62]
Step 2: calculate A and B magnitudes
Step 3: calculate x, y components
Step 4: sum vector components
Step 5: calculate magnitude of R
Step 6: calculate direction of R
4 0
2 years ago
Read 2 more answers
A large crate sits on the floor of a warehouse. Paul and Bob apply constant horizontal forces to the crate. The force applied by
Delicious77 [7]

Answer:

W = -510.98J

Explanation:

Force = 43N, 61° SW

Displacement = 12m, 22° NE

Work done is given as:

W = F*d*cosA

where A = angle between force and displacement.

Angle between force and displacement, A = 61 + 90 + 22 = 172°

W = 43 * 12 * cos172

W = -510.98J

The negative sign shows that the work done is in the opposite direction of the force applied to it.

6 0
2 years ago
"For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
ELEN [110]

Answer:

Explanation:

Given that:

For a first order instrument with a sensitivity of .4 mV/K

constant c  = 25 ms = 25 × 10⁻³ s

The initial temperature T_1 = 273 K

The final temperature T_2 = 473 K

The initial volume = 0.4 mV/K × 273 K = 109.2 V

The final volume =  0.4 mV/K × 473 K =  189.2 V

the instrument’s response as a function of time for a sudden temperature increase can be computed as follows:

Let consider y to be the function of time i.e y(t).

So;

y(t) = 109.2  + (189.2 - 109.2)( 1 - \mathbf{e^{-t/c}})mV

y(t) = (109.2 +  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

Plot the response y(t) as a function of time.

The plot of y(t) as a function of time can be seen in the diagram  attached below.

What are the units for y(t)?

The unit for y(t) is mV.

Find the 90% rise time for y(t90) and the error fraction,

The 90% rise time for y(t90) is as follows:

Initially 90% of 189.2 mV = 0.9 ×  189.2 mV

=  170.28 mV

170.28 mV = (109.2 +  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

170.28 mV - 109.2 mV = 80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

61.08 mV =  80 ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

0.7635  mV = ( 1 - \mathbf{e^{t/25\times 10^{-3}}})) mV

t = 1.44 × 25  × 10⁻³ s

t = 0.036 s

t = 36 ms

The error fraction = \dfrac{189.2-170.28  }{189.2}

The error fraction = 0.1

The error fraction = 10%

8 0
2 years ago
Briana swings a ball on the end of a rope in a circle. The rope is 1.5 m long. The ball completes a full circle every 2.2 s. Wha
schepotkina [342]
The radius of the circular path is 1.5 m.

The circumference is then
1.5\ m*2\pi=3\pi\ m

The ball moves 3π m every 2.2 s, so the speed is
\frac{3\pi\ m}{2.2\ s}\approx 4.3\ m/s
9 0
2 years ago
Read 2 more answers
A meter stick balances at the 50.0-cm mark. If a mass of 50.0 g is placed at the 90.0-cm mark, the stick balances at the 61.3-cm
Airida [17]

Answer:

126.99115 g

Explanation:

50 g at 90 cm

Stick balances at 61.3 cm

x = Distance of the third 0.6 kg mass

Meter stick hanging at 50 cm

Torque about the support point is given by (torque is conserved)

mgl_1=Mgl_2\\\Rightarrow M=\dfrac{ml_1}{l_2}\\\Rightarrow M=\dfrac{50\times (61.3-90)}{50-61.3}\\\Rightarrow M=126.99115\ g

The mass of the meter stick is 126.99115 g

6 0
2 years ago
Read 2 more answers
Other questions:
  • If the clothing maker bought 500 m2 of this fabric, how much money did he lose? Use 1tepiz=0.625dollar and 0.9144m=1yard.'
    8·1 answer
  • The image shows an example of white light entering a prism and coming out as colors of the rainbow. How does a prism a produce t
    11·2 answers
  • An astronaut weighs 200 lb at sea level. The radius of the earth is 3960 miles. What force is exerted on the astronaut if he is
    8·1 answer
  • Two loudspeakers in a plane, 5.0m apart, are playing the same frequency. If you stand 14.0m in front of the plane of the speaker
    14·1 answer
  • A 32-kg child decides to make a raft out of empty 1.0-L soda bottles and duct tape. Neglecting the mass of the duct tape and pla
    15·1 answer
  • An object is attached to a hanging unstretched ideal and massless spring and slowly lowered to its equilibrium position, a dista
    14·1 answer
  • A 0.60-kilogram softball initially at rest is hit with a bat. The ball is in contact with the bat for 0.20 second and leaves the
    15·1 answer
  • A solid conducting sphere with radius 0.75 m carries a net charge of 0.13 nC. What is the magnitude of the electric field at a p
    7·2 answers
  • Consider three starships that pass by an observer on Earth. Starship A is traveling at speed v=c/3v=c/3 relative to Earth and ha
    13·1 answer
  • A champion athlete can produce one horsepower (746 W) for a short period of time. The number of 16-cm-high steps a 70-kg athlete
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!