Answer:
It models conduction because the painter represents a charged object and the paint represents electrons that are transferred through contact.
Explanation:
Conduction phenomenon of charging is the process of charging in which two bodies are made in contact with each other so that charges are transferred due to potential difference of two bodies.
here we know that when hands are shake then it will have paint on it. so here due to hand shake the hands are in contact with charge particles and due to contact the electrons are transferred to the hand.
Now here we need to assume that charge of paint must be opposite that of the charge on the hand because only due to opposite charge attraction the paint must be transferred to the hand
SO here correct answer will be
It models conduction because the painter represents a charged object and the paint represents electrons that are transferred through contact.
Prior to touching the bar magnet, the magnetic domains in the nail were pointing in random directions. When Taylor touched the nail to the bar magnet the magnetic fields of the magnetic domains aligned and it became a temporary magnet.
Answer:
The answer is: c. It does not move
Explanation:
Because the gravitational force is characterized by being an internal force within the Earth-particle system, in this case, the object of mass M. And since in this system there is no external force in the system, it can be concluded that the center of mass of the system will not move.
Answer:
0.9378
Explanation:
Weight (W) of the rider = 100 kg;
since 1 kg = 9.8067 N
100 kg will be = 980.67 N
W = 980.67 N
At the slope of 12%, the angle θ is calculated as:

The drag force D = Wsinθ

where;

A = 0.9 m²
V = 15 m/s
∴
Drag coefficient 


The unit 'mb' means millibar which is equivalent to 1/1000 of 1 bar. To convert the units from bar to atmospheres (atm) and to inches Hg (inHg), we need to know the conversion factors.
a.) 1 atm = 1.01325 bar
0.92 mb(1 bar/1000 mbar)(1 atm/1.01325 bar) =<em> 9.08×10⁻⁴ atm</em>
b.) 1 bar = 29.53 inHg
0.92 mb(1 bar/1000 mbar)(29.53 inHg/1 bar) =<em> 0.027 inHg</em>