answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashutka [201]
2 years ago
10

evaluate the numerical value of the vertical velocity of the car at time t=0.25 s using the expression from part d, where y0=0.7

5m, α=0.95s^-1, and w=6.3s^-1
Physics
1 answer:
likoan [24]2 years ago
8 0

Given :

Displacement , y = 0.75 m .

Angular acceleration , \alpha=0.95\ s^{-2} .

Initial angular velocity , \omega_o=6.3\ s^{-1} .

To Find :

The value of vertical velocity after time t = 0.25 s .

Solution :

By equation of circular motion is given by :

\omega=\omega_o+\alpha t

Putting all given values we get :

\omega=6.3+0.95\times 0.25\\\\\omega= $$6.5375\ s^{-1}

Now , vertical velocity is given by :

v=y\omega\\\\v=0.75\times 6.5375\ m/s\\\\v=4.90\ m/s

Therefore , the numerical value of the vertical velocity of the car at time t=0.25 s is 4.90 m/s .

Hence , this is the required solution .

You might be interested in
You throw a tennis ball (mass 0.0570 kg) vertically upward. It leaves your hand moving at 15.0 m/s. Air resistance cannot be neg
Deffense [45]

Answer:195 J

Explanation:

Given

mass of ball m=0.0570\ kg

ball leaves the hand with u=15\ m/s

maximum height reached by ball h=8\ m

Initial Mechanical energy when ball just leaves the hand

M.E._1=(P.E.+K.E.)_1

M.E._1=(mgh)_1+(\frac{1}{2}mv^2)_1

considering hand to be datum so h_1=0[/tex]

so Potential energy at ground is zero

M.E._1=\frac{1}{2}\times m\times (15)^2

M.E._1=6.41\ J

Mechanical Energy at highest point

(M.E.)_2=(P.E.+K.E.)_2

at highest Point velocity is zero

(M.E.)_2=mgh_2+0

(M.E.)_2=0.0570\times 9.8\times 8

(M.E.)_2=4.46\ J

Decrease in Mechanical energy

(M.E.)_1-(M.E.)_2=6.41-4.46

(M.E.)_1-(M.E.)_2=1.95\ J

3 0
2 years ago
A man holds a rectangular card in front of and parallel to a plane mirror. In order for him to see the entire image of the card,
UkoKoshka [18]

Answer:

mark as the brainly olss

3 0
2 years ago
Write the equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and
yKpoI14uk [10]

Answer:

The newton’s second law is F=ma

The Gravitational force is F=\dfrac{Gm_{1}m_{2}}{r^2}

Explanation:

Given that,

The equivalent formulas for velocity, acceleration, and force using the relationships covered for UCM, Newton’s Laws, and Gravitation.

We know that,

Velocity :

The velocity is equal to the rate of position of the object.

v=\dfrac{dx}{dt}....(I)

Acceleration :

The acceleration is equal to the rate of velocity of the object.

a=\dfrac{dv}{dt}....(II)

Newton’s second Laws

The force is equal to the change in momentum.

In mathematically,

F=\dfrac{d(p)}{dt}

Put the value of p

F=\dfrac{d(mv)}{dt}

F=m\dfrac{dv}{dt}

Put the value from equation (II)

F=ma

This is newton’s second laws.

Gravitational force :

The force is equal to the product of mass of objects and divided by square of distance.

In mathematically,

F=\dfrac{Gm_{1}m_{2}}{r^2}

Where, m₁₂ = mass of first object

m= mass of second object

r = distance between both objects

Hence, The newton’s second law is F=ma

The Gravitational force is F=\dfrac{Gm_{1}m_{2}}{r^2}

3 0
2 years ago
An object initially at rest experiences a constant horizontal acceleration due to the action of a resultant force applied for 10
Marianna [84]

Answer:

a = 18.28 ft/s²

Explanation:

given,

time of force application, t= 10 s

Work = 10 Btu

mass of the object = 15 lb

acceleration, a =  ? ft/s²

1 btu = 778.15 ft.lbf

10 btu = 7781.5 ft.lbf

m = \dfrac{15}{32.174}\ slug

m = 0.466 slug

now,

work done  is equal to change in kinetic energy

W = \dfrac{1}{2} m (v_f^2-v_i^2)

7781.5 = \dfrac{1}{2}\times 0.466\times v_f^2

 v_f = 182.75\ ft/s

now, acceleration of object

  a = \dfrac{v_f-v_o}{t}

  a = \dfrac{182.75-0}{10}

         a = 18.28 ft/s²

constant acceleration of the object is equal to 18.28 ft/s²

3 0
2 years ago
The current supplied by a battery slowly decreases as the battery runs down. Suppose that the current as a function of time is:
ludmilkaskok [199]

Answer: 8.1 x 10^24

Explanation:

I(t) = (0.6 A) e^(-t/6 hr)

I'll leave out units for neatness: I(t) = 0.6e^(-t/6)

If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).

For neatness let k = 1/(6x3600) = 4.63x10^-5, then:

I(t) = 0.6e^(-kt)

Providing t is in seconds, total charge Q in coulombs is

Q= ∫ I(t).dt evaluated from t=0 to t=∞.

Q = ∫(0.6e^(-kt)

= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.

= -(0.6/k)[e^-∞ - e^-0]

= -0.6/k[0 - 1]

= 0.6/k

= 0.6/(4.63x10^-5)

= 12958 C

Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.

5 0
2 years ago
Other questions:
  • If a force always acts perpendicular to an object's direction of motion, that force cannot change the object's kinetic energy.
    10·1 answer
  • A small smooth object slides from rest down a smooth inclined plane inclined at 30 degrees to the horizontal. What is (i) the ac
    10·1 answer
  • For the first nutcracker, two applied forces of magnitude f were required to crack the nut, whereas for the second, only one app
    14·1 answer
  • A baseball player is running to second base at 5.03 m/s. when he is 4.80 m from the plate he goes into a slide. the coefficient
    10·2 answers
  • Recent findings in astrophysics suggest that the observable universe can be modeled as a sphere of radius R = 13.7 × 109 light-y
    13·1 answer
  • A puck of mass m = 0.085 kg is moving in a circle on a horizontal frictionless surface. It is held in its path by a massless str
    15·1 answer
  • Steam at a pressure of 15 bar and a temperature of 320oC is contained in a large vessel. Connected to the vessel through a valve
    8·1 answer
  • A glider is gliding through the air at a height of 416 meters with a speed of 45.2 m/s. The glider dives to a height of 278 mete
    15·1 answer
  • An electron beam enters a crossed-field velocity selector with magnetic and electric fields of 2.0 mT and 6.0×10^3 N/C, respecti
    11·1 answer
  • A uniform Rectangular Parallelepiped of mass m and edges a, b, and c is rotating with the constant angular velocity ω around an
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!