Answer:
Show attached picture
Explanation:
Let's call V the voltage provided by the battery in the circuit. M is the multimeter (let's call
its internal resistance) and R indicates the resistance of the light bulb.
We know that the meter's internal resistance is 1000 times higher than the bulb's resistance:
(1)
Both the meter and the bulb are connected in parallel to the battery, so they both have same potential difference at their terminals:

Using Ohm's law,
, we can rewrite the previous equation as:

where
is the current in the meter
is the current in the bulb
Using (1), this equation becomes

so, the current in the meter is 1000 times less than through the bulb.
<span>If the maximum permissible limit for depression of the structure is 20 centimeters, the number of floors that can be safely added to the building is </span><span>C. 18</span>
depression = (depression/floor)(# floors) < 20
Here are the following choices:
<span>A.
14
B.
15
C.
18
D.
23</span>
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03
Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:

where

is the coefficient of friction, while N is the normal force. So we have:

since we know that F=300 N and

, we can find N, the magnitude of the normal force:

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is

due to the presence of the oil. Therefore, we have:
Answer:
A = 1.4 m/s²
B = -0.10493 m/s³
a = 1.29507 m/s²
T = 28095.8271 N
T = 1.13198 W
Explanation:
t = Time taken
g = Acceleration due to gravity = 9.81 m/s²
The equation

Differentiating with respect to time

At t = 0

Hence, A = 1.4 m/s²

B = -0.10493 m/s³
At t = 5 seconds

a = 1.29507 m/s²

T = 28095.8271 N
Weight of rocket


T = 1.13198 W
Given that,
Mass of each washer = 4.9 g
We need to calculate the mass of two washers in kg
Using conversion of unit
Mass of each washer 
So, Mass of two washers is

Put the value of m


If 4 washer are attached to the spring
We need to calculate the applied force on the car
Using formula of force

Put the value into the formula


Hence, (i), The mass of two washers is 0.0098 kg.
(ii). The applied force on the car is 0.192 N.