answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivan
2 years ago
10

An archer shot a 0.06 kg arrow at a target. The arrow accelerated at 5,000 m/s2 to reach a speed of 50.0 m/s as it left the bow.

During this acceleration, what was the net force on the arrow to the nearest newton?
Physics
1 answer:
laila [671]2 years ago
7 0

Answer:

300 N

Explanation:

The net force acting on the arrow is given by Newton's Second Law:

F=ma

where

m = 0.06 kg is the mass of the arrow

a = 5,000 m/s^2 is the acceleration of the arrow

Substituting the numbers into the equation, we find

F=(0.06 kg)(5,000 m/s^2)=300 N

You might be interested in
4. In a closed system consisting of a cannon and a cannonball, the kinetic energy of a cannon is 72,000 J. If the cannonball is
FromTheMoon [43]

Answer:

D an B

Explanation:

3 0
2 years ago
Read 2 more answers
A boy throws a 15 kg ball at 4.7 m/s to a 65 kg girl who is stationary and standing on a skateboard. After catching the ball, th
jek_recluse [69]

Answer:

a)v_{f}=0.88m/s

Explanation:

To solve this problem we use the Momentum's conservation Law, before and after the girl catch the ball:

\\ p_{1}=p_{2}\\m_{ball}*v_{o.ball}+m_{girl}*v_{o.girl} = m_{ball}*v_{f.ball} + m_{girl}*v_{f.girl}        (1)

At the beginning the girl is  stationary:

v_{o.girl}=0m/s       (2)

If the girl catch the ball, both have the same speed:

v_{f.girl}=v_{f.ball}=v_{f}       (3)

We replace (2) and (3) in (1):

m_{ball}*v_{o.ball} = (m_{ball}+m_{girl})*v_{f} \\

We can now solve the equation for v_{f}:

v_{f}=\frac{m_{ball}*v_{o.ball}}{(m_{ball}+m_{girl})}=\frac{15*4.7}{15+65}=0.88m/s

4 0
2 years ago
A visitor to the observation deck of a skyscraper manages to drop a penny over the edge. As the penny falls faster, the force du
pentagon [3]
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
8 0
2 years ago
Read 2 more answers
A 7.5 nC point charge and a - 2.9 nC point charge are 3.2 cm apart. What is the electric field strength at the midpoint between
Oduvanchick [21]

Answer:

Net electric field, E_{net}=91406.24\ N/C

Explanation:

Given that,

Charge 1, q_1=7.5\ nC=7.5\times 10^{-9}\ C

Charge 2, q_2=-2.9\ nC=-2.9\times 10^{-9}\ C

distance, d = 3.2 cm = 0.032 m

Electric field due to charge 1 is given by :

E_1=\dfrac{kq_1}{r^2}

E_1=\dfrac{9\times 10^9\times 7.5\times 10^{-9}}{(0.032)^2}

E_1=65917.96\ N/C

Electric field due to charge 2 is given by :

E_2=\dfrac{kq_2}{r^2}

E_2=\dfrac{9\times 10^9\times 2.9\times 10^{-9}}{(0.032)^2}

E_2=25488.28\ N/C

The point charges have opposite charge. So, the net electric field is given by the sum of electric field due to both charges as :

E_{net}=E_1+E_2

E_{net}=65917.96+25488.28

E_{net}=91406.24\ N/C

So, the electric field strength at the midpoint between the two charges is 91406.24 N/C. Hence, this is the required solution.

3 0
2 years ago
A block of mass m is pushed up against a spring with spring constant k until the spring has been compressed a distance x from eq
Snowcat [4.5K]

Answer:d

Explanation:

Spring is compressed to a distance of x from its equilibrium position

Work done by block on the spring is equal to change in elastic potential energy

i.e. Work done by block W=\frac{1}{2}kx^2

therefore spring will also done an equal opposite amount of work on the block in the absence of external force

Thus work done by spring on the block W=-\frac{1}{2}kx^2

Thus option d is correct

6 0
2 years ago
Other questions:
  • During a parachute jump a 58 kg person opens the parachute and the total drag force acting on the person is 720 n (up). calculat
    13·2 answers
  • Shelley gives her little sister a 5-meter head start in a bike race. The race ends 15 meters east from where Shelley started. If
    13·2 answers
  • An object starts from rest and slides with negligible friction down an air track tipped at an angle theta from the horizontal. A
    6·1 answer
  • A particle leaves the origin with an initial velocity v → = (3.00iˆ) m/s and a constant acceleration a → = (−1.00iˆ − 0.500jˆ) m
    10·1 answer
  • Learning Goal: How do 2 ordinary waves build up a "standing" wave? A very generic formula for a traveling wave is: y1(x,t)=Asin(
    5·1 answer
  • Two lasers, one red (with wavelength 633.0 nm) and the other green (with wavelength 532.0 nm), are mounted behind a 0.150-mm sli
    10·1 answer
  • It took a squirrel 0.50\,\text s0.50s0, point, 50, start text, s, end text to run 5.0\,\text m5.0m5, point, 0, start text, m, en
    15·2 answers
  • The equation for photosynthesis is 6H2O (water) + 6CO2 (carbon dioxide) + Light Energy → C6H12O6 (glucose) + 6O2 (oxygen). When
    5·1 answer
  • Marta , who is only 5years old , heard her mother use a curse word and is now repeating that word much to the embarrassment of h
    13·1 answer
  • One day, Pinki was ironing the clothes in her room. After half an hour of ironing, the light went off and Pinki went outside to
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!