answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
labwork [276]
2 years ago
7

Water evaporating from a pond does so as if it were diffusing across an air film 0.15 cm thick. The diffusion coefficient of wat

er in 20 !C air is about 0.25 cm2/sec. If the air out of the film is fifty percent saturated, how fast will the water level drop in a day?
Physics
1 answer:
QveST [7]2 years ago
7 0

Answer:

The water level will drop by about 1.24 cm in 1 day.

Explanation:

Here Mass flux of water vapour is given as

                               j_{H_2O}=\frac{D}{l} \bigtriangleup c

where

  • j_{H_2O} is the mass flux of the water which is to be calculated.
  • D is diffusion coefficient which is given as 0.25 cm^2/s
  • l is the thickness of the film which is 0.15 cm thick.
  • \bigtriangleup c is given as

                                \bigtriangleup c= \frac{P_{sat}-P_a}{RT}

In this

  • P_{sat} is the saturated water pressure, which is look up from the saturated water property at 20°C and 0.5 saturation given as 2.34 Pa
  • P_a is the air pressure which is given as 0.5 times of P_{sat}
  • R is the universal gas constant as 8.314 kJ/kmol-K
  • T is the temperature in Kelvin scale which is 20+273= 293K

By substituting values in the equation

                                    \bigtriangleup c= \frac{P_{sat}-P_a}{RT} \\ \bigtriangleup c= \frac{P_{sat}-0.5P_{sat}}{RT} \\ \bigtriangleup c= \frac{0.5P_{sat}}{RT} \\ \bigtriangleup c= \frac{0.5 \times 2.34}{8.314 \times 293} \\\bigtriangleup c= 0.48 mol/m^3

Converting \bigtriangleup c into cm^3/cm^3

As 1 mole of water 18 cm^3 so

                               \bigtriangleup c= 0.48 mol/m^3 \\ \bigtriangleup c= 0.48 \times 18 \times 10^{-6}  cm^3/cm^3 \\ \bigtriangleup c= 8.64 \times 10^{-6}  cm^3/cm^3

Putting this in the equation of mass flux equation gives

                            j_{H_2O}=\frac{D}{l} \bigtriangleup c \\ j_{H_2O}=\frac{0.25}{0.15} \times 8.64 \times 10^{-6} \\ j_{H_2O}=14.4 \times 10^{-6}  cm/s

For calculation of water level drop in a day, converting mass flux as

                     j_{H_2O}=14.4 \times 10^{-6}  \times 24 \times 3600  cm/day\\ j_{H_2O}=1.24  cm/day

So the water level will drop by about 1.24 cm in 1 day.

You might be interested in
A 1.0-c point charge is 15 m from a second point charge, and the electric force on one of them due to the other is 1.0 n. what i
Fofino [41]
The answer is 25nC !!! 

4 0
2 years ago
Magnus has reached the finals of a strength competition. In the first round, he has to pull a city bus as far as he can. One end
iragen [17]

Answer:

The workdone is  W_d =-4400J

Explanation:

The free body diagram is shown on the first uploaded image

From the question we are given that

            The force is on the force gauge  F = 2750 N

             The distance that Magnus pulled the bus  d = 1.60m

Generally  the workdone by the tension force on Magnus is

                  Workdone = Force * displacement \ in \ the \ direction \ of \ force

                     W_d = F * (-d)

This negative sign show that is tension force  is in the opposite direction to Magnus movement (i.e the movement of the bus )

Substituting value we have

                   Workdone  =  - 2750 * 1.60

                                     =-4400 J

7 0
2 years ago
When driving in heavy rain, or on a flooded road, your tires can ride on a thin film of water like skis;
Simora [160]
The answer is letter a. It is best to slow down in situations of heavy rain or flooded road as skid could be the result if you lose out of control because the driver isn't slowing down. That is why it is being said that tires can ride on a thin film of water skis as it could skid if it has lost control if the driver hadn't slowed down.
7 0
2 years ago
5.16 An insulated container, filled with 10 kg of liquid water at 20 C, is fitted with a stirrer. The stirrer is made to turn by
Anna007 [38]

Answer:

a) W=2.425kJ

b) \Delta E=2.425kJ

c) T_f=20.06^{o}C

d) Q=-2.425kJ

Explanation:

a)

First of all, we need to do a drawing of what the system looks like, this will help us visualize the problem better and take the best possible approach. (see attached picture)

The problem states that this will be an ideal system. This is, there will be no friction loss and all the work done by the object is transferred to the water. Therefore, we need to calculate the work done by the object when falling those 10m. Work done is calculated by using the following formula:

W=Fd

Where:

W=work done [J]

F= force applied [N]

d= distance [m]

In this case since it will be a vertical movement, the force is calculated like this:

F=mg

and the distance will be the height

d=h

so the formula gets the following shape:

W=mgh

so now e can substitute:

W=(25kg)(9.7 m/s^{2})(10m)

which yields:

W=2.425kJ

b) Since all the work is tansferred to the water, then the increase in internal energy will be the same as the work done by the object, so:

\Delta E=2.425kJ

c) In order to find the final temperature of the water after all the energy has been transferred we can make use of the following formula:

\Delta Q=mC_{p}(T_{f}-T_{0})

Where:

Q= heat transferred

m=mass

C_{p}=specific heat

T_{f}= Final temperature.

T_{0}= initial temperature.

So we can solve the forula for the final temperature so we get:

T_{f}=\frac{\Delta Q}{mC_{p}}+T_{0}

So now we can substitute the data we know:

T_{f}=\frac{2 425J}{(10000g)(4.1813\frac{J}{g-C})}+20^{o}C

Which yields:

T_{f}=20.06^{o}C

d)

For part d, we know that the amount of heat to be removed for the water to reach its original temperature is the same amount of energy you inputed with the difference that since the energy is being removed this means that it will be negative.

\Delta Q=-2.425kJ

3 0
2 years ago
A monkey weighs 6.00 x 102 N and swings from vine to vine. As the monkey grabs a new vine, both vines make an angle of 35.0° wit
zmey [24]

Answer:

T=366.23\ N

Explanation:

Given:

  • mass of monkey, w=600\ N
  • angle of vine from the vertical, \theta=35^{\circ}

Now follow the schematic to understand the symmetry and solution via Lami's theorem.

<u>The weight of the monkey will be balanced equally by the tension in both the vines:</u>

Using Lami's Theorem:

\frac{w}{sin\ 70^{\circ}} =\frac{T}{sin\ 145^{\circ}}

\frac{600}{sin\ 70^{\circ}} =\frac{T}{sin\ 145^{\circ} }

T=366.23\ N

4 0
2 years ago
Other questions:
  • yami pours powdered cocoa mix into milk and stirs it. then she microwaves the mixture for three minutes. when she takes the cup
    12·2 answers
  • A cave explorer travels 3.0 m eastward, then 2.5 m northward, and finally 15.0 m westward. use the graphical method to find the
    8·2 answers
  • Gold and silicon are mutually insoluble in the solid state and form a eutectic system with a eutectic temperature of 636 k and a
    8·1 answer
  • All forces on the bullets cancel so that the net force on a bullet is zero, which means the bullet has zero acceleration and is
    6·1 answer
  • Myth: An organism's kingdom only describes physical characteristics. <br> Fact:<br> Evidence:
    14·1 answer
  • Karyotypes are done by matching up _____________________________ so that they are paired up. Question 11 options:
    13·2 answers
  • Match each force abbreviation to the correct description. Fg Fp Ff Fn force exerted by a push or pull. Support force at a right
    10·2 answers
  • Many industries are powered via distant power stations. Calculate the current flowing through a 7,300m long 10. copper power lin
    15·1 answer
  • Question 5 At 12:00 pm, a spaceship is at position ⎡⎣324⎤⎦ km ⎣ ⎢ ⎡ ​ 3 2 4 ​ ⎦ ⎥ ⎤ ​ km away from the origin with respect to so
    6·1 answer
  • Un pendule est constitue par une masse ponctuelle m= 0,1kg accrocher a un fil sans masse de longueur L = 0,4 m on ecarte ce pend
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!