The formula for kinetic energy is

. Thus, the equation for velocity is

.
Explanation:
It is given that,
The horizontal speed of a cliff diver, 
It reaches the water below 2.00 s later, t = 2 s
Let
is the distance where the diver hit the water. It can be calculated as follows :

Let
is the height of the cliff. It can be calculated using second equation of motion as follows :

So, the cliff is 19.6 m high and it will hit the water at a distance of 19.6 m.
72s for 24 complete oscillations.
Thus, a complete oscillation takes 72/24=3s
Answer: period T=3s
Answer:

Explanation:
During the exchange of applied force, thermal energy is generated by the friction that exists between the ground and the tire.
Said force according to the statement is the reaction of half the force on the rear tire. In this way the normal force acted is,

The work done is given by the friction force and the distance traveled,

Where ![\mu_k [/ tex] is the coefficient of kinetic frictionN is the normal force previously found d is the distance traveled,Replacing,[tex]W_f = (0.80)(441)(0.42)](https://tex.z-dn.net/?f=%20%5Cmu_k%20%5B%2F%20tex%5D%20is%20the%20coefficient%20of%20kinetic%20friction%3C%2Fp%3E%3Cp%3EN%20is%20the%20normal%20force%20previously%20found%20d%20is%20the%20distance%20traveled%2C%3C%2Fp%3E%3Cp%3EReplacing%2C%3C%2Fp%3E%3Cp%3E%5Btex%5DW_f%20%3D%20%280.80%29%28441%29%280.42%29)
The thermal energy released through the work done is,

Answer:
Rod 1 has greater initial angular acceleration; The initial angular acceleration for rod 1 is greater than for rod 2.
Explanation:
For the rod 1 the angular acceleration is
Similarly, for rod 2

Now, the moment of inertia for rod 1 is
,
and the torque acting on it is (about the center of mass)

therefore, the angular acceleration of rod 1 is


Now, for rod 2 the moment of inertia is


and the torque acting is (about the center of mass)


therefore, the angular acceleration
is


We see here that

therefore

In other words , the initial angular acceleration for rod 1 is greater than for rod 2.