answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alika [10]
1 year ago
12

A 69.0 kg ice skater moving to the right with a velocity of 2.61 m/s throws a 0.22 kg snowball to the right with a velocity of 2

5.2 m/s relative to the ground. (a) What is the velocity of the ice skater after throwing the snowball
Physics
1 answer:
Luda [366]1 year ago
4 0

Answer:

0.08m/s

Explanation:

Given data

M1= 69kg

v1= 2.61m/s

M2= 0.22kg

v2= 25.2m/s

Before snowball is thrown:

Total mass of skater + snowball = 69+ 0.22 = 69.22kg

Total Momentum of skater + snowball = mv = 69.22 x 2.61 = 180.7 kgm/s

After snowball is thrown:

Let's call the velocity of the skater V.

Total momentum = momentum of skater + momentum of snowball

=69.22V + (5.544)

= 69.22V + 5.544

So:

180.7  = 69.22V+5.544

180.7- 5.544= 69.22V

175.156= 69.22V

V= 175.156/69.22

V = 2.53m/s

The total momentum after catching the snowball is mV or:

(69.0 + 0.22) x V

So:

5.544= 69.22V

V= 5.544/69.22

V=0.08m/s

The velocity of the ice skater after throwing the snowball is 0.08m/s

You might be interested in
Which statements describe vectors? Check all that apply. -Vectors have magnitude only. -Vectors have direction only. -Vectors ha
Natali [406]

Answer:

Vectors have both magnitude and direction

Explanation:

Vectors show how strong the force in because the bigger the arrow, the stronger the force.  Also, it obviously shows direction because its an arrow.

6 0
2 years ago
Read 2 more answers
Ron fills a beaker with glycerin (n = 1.473) to a depth of 5.0 cm. if he looks straight down through the glycerin surface, he wi
Tju [1.3M]

By law of refraction we know that image position and object positions are related to each other by following relation

\frac{\mu_1}{h_o} = \frac{\mu_2}{h_i}

here we know that

\mu_1 = 1.473

h_o = 5 cm

\mu_2 = 1

now by above formula

\frac{1.473}{5} = \frac{1}{h_i}

h_i = 3.39 cm

so apparent depth of the bottom is seen by the observer as h = 3.39 cm

7 0
2 years ago
Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest o
sveta [45]

Explanation:

A) To prove the motion of the center of mass of the cylinders is simple harmonic:

System diagram for given situation is shown in attached Fig. 1

We can prove the motion of the center of mass of the cylinders is simple harmonic if

a_{x} = -\omega^{2}  x

where aₓ is acceleration when attached cylinders move in horizontal direction:

<h3>PROOF:</h3>

rotational inertia for cylinders  is given as:

                                  I=\frac{1}{2}MR^{2} -----(1)

Newton's second law for angular motion is:

                                             ∑τ = Iα ------(2)

For linear motion in horizontal direction it is:

                                             ∑Fₓ = Maₓ ------ (3)

By definition of torque:

                                               τ  = RF --------(4)        

Put (4) and (1) in (2)

                                       RF=\frac{1}{2}MR^{2}\alpha

                                       RF=\frac{1}{2}MR^{2}\alpha

from Fig 3 it can be seen that fs is force by which the cylinders roll without slipping as they oscillate

So above equation becomes

                                   f_{s}=\frac{1}{2}MR\alpha------ (5)

As angular acceleration is related to linear by:

                                          a= R\alpha

Eq (5) becomes

                                    f_{s}=\frac{1}{2}Ma_{x}---- (6)

aₓ shows displacement in horizontal direction

From (3)

                                              ∑Fₓ = Maₓ

Fₓ is sum of fs and restoring force that spring exerts:

                                  \sum F_{x} = f_{s} - kx ----(7)

Put (7) in (3)

                                  f_{s} - kx  = Ma_{x}[/tex] -----(8)

Using (6) in (8)

                               \frac{1}{2}Ma_{x} - kx =Ma_{x}

                                     a_{x} = \frac{2k}{3M} x --- (9)

For spring mass system

                                  a= -\omega^{2} x ----- (10)

Equating (9) and (10)

                                  \omega^{2} = \frac{2k}{3M}

\omega = \sqrt{ \frac{2k}{3M}}

then (9) becomes

                                a_{x} = - \omega^{2}x

(The minus sign says that x and  aₓ  have opposite directions as shown in fig 3)

This proves that the motion of the center of mass of the cylinders is simple harmonic.

<h3 /><h3>B) Time Period</h3>

Time period is related to angular frequency as:

                                   T=\frac{2\pi }{\omega}

                                  T = 2\pi \sqrt{\frac{3M}{2k}

                           

 

5 0
2 years ago
On a snowy day, max (mass = 15 kg) pulls his little sister maya in a sled (combined mass = 20 kg) through the slippery snow. max
sesenic [268]

Work done by a given force is given by

W = F.d

here on sled two forces will do work

1. Applied force by Max

2. Frictional force due to ground

Now by force diagram of sled we can see the angle of force and displacement

work done by Max = W_1 = Fdcos\theta

W_1 = 12*5cos15

W_1 = 57.96 J

Now similarly work done by frictional force

W_2 = Fdcos\theta

W_2 = 4*5cos180

W_2= -20 J

Now total work done on sled

W_{net}= W_1 + W2

W_{net} = 57.96 - 20 = 37.96 J

7 0
2 years ago
Some of the fastest dragsters (called "top fuel) do not race for more than 300-400m for safety reasons. Consider such a dragster
Masja [62]

Answer:

1.10261 times g

416.17506 mph

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

s=ut+\frac{1}{2}at^2\\\Rightarrow 400=0\times 8.6+\frac{1}{2}\times a\times 8.6^2\\\Rightarrow a=\frac{400\times 2}{8.6^2}\\\Rightarrow a=10.81665\ m/s^2

Dividing by g

\dfrac{a}{g}=\dfrac{10.81665}{9.81}\\\Rightarrow \dfrac{a}{g}=1.10261\\\Rightarrow a=1.10261g

The acceleration is 1.10261 times g

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 10.81665\times 1.6\times 10^3+0^2}\\\Rightarrow v=186.04644\ m/s

In mph

186.04644\times \dfrac{3600}{1609.34}=416.17506\ mph

The speed of the dragster is 416.17506 mph

5 0
2 years ago
Other questions:
  • A receptor that contains many mechanically-gated ion channels would function BEST as a ____________.
    10·1 answer
  • A kayaker needs to paddle north across a 100-m-wide harbor. the tide is going out, creating a tidal current that flows to the ea
    14·2 answers
  • what shall be the effect on the least count of spherometer if number of divisions on its circular scale be doubled?
    12·1 answer
  • A trooper is moving due south along the freeway at a speed of 23 m/s. at time t = 0, a red car passes the trooper. the red car m
    12·2 answers
  • A box of mass M is pushed a distance Δ x across a level floor by a constant applied force F . The coefficient of kinetic frictio
    12·1 answer
  • CHEGG 42 mT magnetic field points due west. If a proton of kinetic energy 9 x 10-12 J enters this field in an upward direction,
    15·1 answer
  • A 3-kg skateboard is rolling down the sidewalk at 4 m/s when it collides with a 1-kg skateboard that was initially at rest. If t
    14·2 answers
  • 1. Order the materials from smallest refractive index to largest refractive index.
    6·1 answer
  • Which of the following has a particles in most irregular pattern​
    10·1 answer
  • The Problems: 1. Xavier starts at a position of 0 m and moves with an average speed of 0.50 m/s for 3.0 seconds. He normally mov
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!