answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alika [10]
1 year ago
12

A 69.0 kg ice skater moving to the right with a velocity of 2.61 m/s throws a 0.22 kg snowball to the right with a velocity of 2

5.2 m/s relative to the ground. (a) What is the velocity of the ice skater after throwing the snowball
Physics
1 answer:
Luda [366]1 year ago
4 0

Answer:

0.08m/s

Explanation:

Given data

M1= 69kg

v1= 2.61m/s

M2= 0.22kg

v2= 25.2m/s

Before snowball is thrown:

Total mass of skater + snowball = 69+ 0.22 = 69.22kg

Total Momentum of skater + snowball = mv = 69.22 x 2.61 = 180.7 kgm/s

After snowball is thrown:

Let's call the velocity of the skater V.

Total momentum = momentum of skater + momentum of snowball

=69.22V + (5.544)

= 69.22V + 5.544

So:

180.7  = 69.22V+5.544

180.7- 5.544= 69.22V

175.156= 69.22V

V= 175.156/69.22

V = 2.53m/s

The total momentum after catching the snowball is mV or:

(69.0 + 0.22) x V

So:

5.544= 69.22V

V= 5.544/69.22

V=0.08m/s

The velocity of the ice skater after throwing the snowball is 0.08m/s

You might be interested in
g A 4 cm diameter "bobber" with a mass of 3 grams floats on a pond. A thin, light fishing line is tied to the bottom of the bobb
Law Incorporation [45]

Answer:

Explanation:

total weight acting downwards

= 3g + 10g

13 g

volume of lead = 10 / 11.3 = .885 cm³

Let the volume of bobber submerged in water be v in floating position . buoyant force on bobber  = v x 1 x g

Buoyant force on lead =  .885 x 1 x g

total buoyant force = vg + .885 g

For floating

vg + .885 g  = 13 g

v = 12.115 cm³

total volume of bobber

= 4/3 x 3.14 x 2³

= 33.5 cm³

fraction of volume submerged

= 12.115  / 33.5

= .36  

= 36 %

4 0
2 years ago
An early submersible craft for deep-sea exploration was raised and lowered by a cable from a ship. When the craft was stationary
Assoli18 [71]

Answer:

The tension in the cable when the craft was being lowered to the seafloor is 4700 N.

Explanation:

Given that,

When the craft was stationary, the tension in the cable was 6500 N.

When the craft was lowered or raised at a steady rate, the motion through the water added an 1800 N.

The drag force of 1800 N will act in the upward direction. As it was lowered or raised at a steady rate, so its acceleration is 0. As a result, net force is 0. So,

T + F = W

Here, T is tension

F = 1800 N

W = 6500 N

Tension becomes :

T=W-F\\\\T=6500-1800\\\\T=4700\ N

So, the tension in the cable when the craft was being lowered to the seafloor is 4700 N.

7 0
2 years ago
Points A, B, and C form the vertices of a triangle in a nonuniform electrostatic field. The electrostatic work done on a particl
Trava [24]

Answer:

Explanation:

Let electric potential at A ,B and C be Va , Vb and Vc respectively.

Work done = charge x potential difference

Wab = q ( Va - Vb )

Wac =  q (  Va -  Vc )

Given

Wac = - Wab / 3

3Wac = - Wab

Now

Wbc = q ( Vb - Vc )

= q [ ( Va-Vc ) - ( Va - Vb )]  

= Wac - Wab

= Wac + 3Wac

= 4Wac

4 0
1 year ago
The launching velocity of a missile is 20.0 m/s, and it is shot at 53º above the horizontal. Which of the velocity components (n
Gekata [30.6K]
Neglecting air resistance, the horizontal component remains constant. The angle doesn't matter.
5 0
2 years ago
Read 2 more answers
A 1.0 kg block is attached to an unstretched
KonstantinChe [14]

Answer:

Change in  potential energy of the block-spring-Earth

system between Figure 1 and Figure 2 = 1 Nm.

Explanation:

Here, spring constant, k  = 50 N/m.

given block comes down eventually 0.2 m below.

here, g = 10 m/s.

let block be at a height h above the ground in figure 1.

⇒In figure 2, potential energy of the block-spring-Earth

system = m×g×(h - 0.2) + 1/2× k × x². where, x = change in spring length.

⇒ Change in  potential energy of the block-spring-Earth

system between Figure 1 and Figure 2 = (m×g×(h - 0.2)) - (1/2× k × x²)

              =  (1×10×0.2) - (1/2×50×0.2×0.2) = 1 Nm.

4 0
2 years ago
Other questions:
  • Which of these is the most effective way for Leanna to cool down after an intense bike ride
    12·1 answer
  • Two objects are placed in thermal contact and are allowed to come to equilibrium in isolation. the heat capacity of object a is
    7·1 answer
  • Why doesn't a ball roll on forever after being kicked at a soccer game?
    6·2 answers
  • Buffalo, New York, experienced a snowstorm November 13–21, 2014. Residents refer to the event as “Snowvember.” What was the like
    10·2 answers
  • A 60 kg Gila monster on a merry-go-round is traveling in a circle with a radius of 3 m, rotating at a rate of 9 revolutions/minu
    9·1 answer
  • Image that the radiation emitted by the nitrogen at a frequency of 8.88×1014 Hz is absorbed by an electron in a molecule of meth
    9·2 answers
  • A thin copper rod 1.0 m long has a mass of 0.050 kg and is in a magnetic field of 0.10 t. What minimum current in the rod is nee
    15·1 answer
  • An ambulance driving 35.0 m/s emits a sound wave with a wavelength of 80.0 centimeters. As it drives away from a hospital, which
    7·1 answer
  • A proton moves along the x-axis with vx=1.0×107m/s. As it passes the origin, what are the strength and direction of the magnetic
    11·1 answer
  • The natural direction of heat flow between two reservoirs depends on ....​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!