Answer:
(a) k =
(b) τ =
∝
Explanation:
The moment of parallel pipe rotating about it's axis is given by the formula;
I =
---------------------------------1
(a) The kinetic energy of a parallel pipe is also given as;
k =
--------------------------------2
Putting equation 1 into equation 2, we have;
k = 
k =
(b) The angular momentum is given by the formula;
τ = Iw -----------------------3
Putting equation 1 into equation 3, we have
τ = 
But
τ = dτ/dt =
------------------4
where
dw/dt = angular acceleration =∝
Equation 4 becomes;
τ =
∝
Answer:
T=C*P*V
Explanation:
It is said that a variable - let's call 'y' -, is proportional to another - let's call it 'x' - if x and y are multiplicatively connected to a constant 'C'. It means that their product (x*y) can be always equaled to the constant 'C' or their division (
) can be always equaled to 'C'. The first case is the case of the inverse proportionality: It is said that x and y are inversely proportional if

The second case is the case of the direct proportionality: It is said that x and y are directly proportional if
: x is directly proportional to y.
or
: y is directly proportional to x.
Always that any text does not specify about directly or inversely proportionality, it is assumed to mean directly automatically.
For our case, we are said that the temperature T is proportional to the pressure P and the volume V (we assume that it means directly); it is a double proportionality but follows the same rules:
If T were just proportional to P, we would have:

If T were just proportional to V, we would have:

As T is proportional to both P and V, the right equation is:

In order to isolate the temperature, let's multiply (P*V) at each side of the equation:

Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :


Let E is the kinetic energy of the plane. It is given by :


E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.
Answer:
The tension in the rope is 229.37 N.
Explanation:
Given:
Mass of the block is, 
Coefficient of static friction is, 
Angle of inclination is,
°
Draw a free body diagram of the block.
From the free body diagram, consider the forces in the vertical direction perpendicular to inclined plane.
Forces acting are
and normal
. Now, there is no motion in the direction perpendicular to the inclined plane. So,

Consider the direction along the inclined plane.
The forces acting along the plane are
and frictional force,
, down the plane and tension,
, up the plane.
Now, as the block is at rest, so net force along the plane is also zero.

Therefore, the tension in the rope is 229.37 N.
Answer:
Horizontal component: 
Vertical component: 
Explanation:
To find the horizontal and vertical components of the force, we just need to multiply the magnitude of the force by the cosine and sine of the angle with the horizontal, respectively.
Therefore, for the horizontal component, we have:



For the vertical component, we have:



So the horizontal component of the tension force is 58 N and the vertical component is 33.5 N.