answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Roman55 [17]
2 years ago
12

A 4.0-mF capacitor initially charged to 50 V and a 6.0-mF capacitor charged to 30 V are connected to each other with the positiv

e plate of each connected to the negative plate of the other. What is the final charge on the 6.0-mF capacitor? Group of answer choices
Physics
2 answers:
arsen [322]2 years ago
7 0

Answer:

0.192 C

Explanation:

The charge in a capacitor is given as,

Q = CtVt..................... Equation 1

Where Q = Charge, Ct =  Effective Capacitance of the capacitors, Vt =  Effective Voltage.

Note: If the capacitors are connected to each other with the positive plate of each connected to the negative plate of the other means that the capacitors are connected in series

The combined capacitor in series is given as,

1/Ct = 1/C1 + 1/C2

Where C1 = Capacitance of the first capacitor, C2 = Capacitance of the second capacitor.

Ct = C1C2/(C1+C2)...................... Equation 2

Given: C1 = 4.0 mF, C2 = 6.0 mF

Substitute into equation 2

Ct = (4×6)/(4+6)

Ct = 24/10

Ct = 2.4 mF.

Also,

Vt = V1 + V2................... Equation 4

Where V1 = Voltage in the first capacitor, V2 = Voltage in the second capacitor.

Given: V1 = 50 V, V2 = 30 V

Vt = 50+30

Vt = 80 V.

Substitute the value of Vt and Ct into equation 1

Q = 80(2.4)

Q = 192 mC

Q = 0.192 C.

Since both capacitors are in series, The same quantity of charge flows through them.

Hence the final charge on the 6.0 mF capacitor = 0.192 C

Juli2301 [7.4K]2 years ago
5 0

Answer:

<em>The final charge on the 6.0 mF capacitor would be 12 mC</em>

Explanation:

The initial charge on 4 mF capacitor  = 4 mf  x 50 V = 200 mC

The initial Charge on 6 mF capacitor  = 6 mf x 30 V =180 mC

Since the negative ends are joined together  the total charge on both capacity would be;

q = q_{1} -q_{2}

q = 200 - 180

q = 20 mC

In order to find the final charge on the 6.0 mF capacitor we have to find the combined voltage

q = (4 x V) + (6 x V)

20 = 10 V

V = 2 V

For the final charge on 6.0 mF;

q = CV

q = 6.0 mF x 2 V

q =  12 mC

Therefore the final charge on the 6.0 mF capacitor would be 12 mC

You might be interested in
What conclusion can be derived by comparing the central tendencies of the two data sets?
zhannawk [14.2K]
The answer is B. I don’t think I need to explain this,
Mean is average, Mode is the most common number, and Median is the middle number when you put the numbers is numerical order from least to greatest
3 0
2 years ago
A baseball player exerts a force of 100 N on a ball for a distance of 0.5 mas he throws it. If the ball has a mass of 0.15 kg, w
Aloiza [94]

Answer:

25.82 m/s

Explanation:

We are given;

Force exerted by baseball player; F = 100 N

Distance covered by ball; d = 0.5 m

Mass of ball; m = 0.15 kg

Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.

We should note that work done is a measure of the energy exerted by the baseball player.

Thus;

F × d = ½mv²

100 × 0.5 = ½ × 0.15 × v²

v² = (2 × 100 × 0.5)/0.15

v² = 666.67

v = √666.67

v = 25.82 m/s

4 0
1 year ago
Which economic idea did Adam Smith promote in The Wealth of Nations?
7nadin3 [17]

Answer: economies are the strongest when workers have specialized skills

Explanation:

4 0
2 years ago
Read 2 more answers
One end of a string is fixed. An object attached to the other end moves on a horizontal plane with uniform circular motion of ra
sveticcg [70]

Answer:

If both the radius and frequency are doubled, then the tension is increased 8 times.

Explanation:

The radial acceleration (a_{r}), measured in meters per square second, experimented by the moving end of the string is determined by the following kinematic formula:

a_{r} = 4\pi^{2}\cdot f^{2}\cdot R (1)

Where:

f - Frequency, measured in hertz.

R - Radius of rotation, measured in meters.

From Second Newton's Law, the centripetal acceleration is due to the existence of tension (T), measured in newtons, through the string, then we derive the following model:

\Sigma F = T = m\cdot a_{r} (2)

Where m is the mass of the object, measured in kilograms.

By applying (1) in (2), we have the following formula:

T = 4\pi^{2}\cdot m\cdot f^{2}\cdot R (3)

From where we conclude that tension is directly proportional to the radius and the square of frequency. Then, if radius and frequency are doubled, then the ratio between tensions is:

\frac{T_{2}}{T_{1}} = \left(\frac{f_{2}}{f_{1}} \right)^{2}\cdot \left(\frac{R_{2}}{R_{1}} \right) (4)

\frac{T_{2}}{T_{1}} = 4\cdot 2

\frac{T_{2}}{T_{1}} = 8

If both the radius and frequency are doubled, then the tension is increased 8 times.

5 0
1 year ago
A uniform 1.4-kg rod that is 0.75 m long is suspended at rest from the ceiling by two springs, one at each end of the rod. Both
svetlana [45]

Answer:

7 deg

Explanation:

m = mass of the rod = 1.4 kg

W = weight of the rod = mg = (1.4) (9.8) = 13.72 N

k_{L} = spring constant for left spring = 59 Nm^{-1}

k_{R} = spring constant for right spring = 33 Nm^{-1}

x_{L} = stretch in the left spring

x_{R} = stretch in the right spring

L = length of the rod = 0.75 m

\theta = Angle the rod makes with the horizontal

Using equilibrium of force in vertical direction for left spring

k_{L} x_{L} = (0.5) W\\(59) x_{L} = (0.5) (13.72)\\x_{L} = 0.116 m

Using equilibrium of force in vertical direction for right spring

k_{R} x_{R} = (0.5) W\\(33) x_{R} = (0.5) (13.72)\\x_{R} = 0.208 m

Angle made with the horizontal is given as

\theta = tan^{-1}(\frac{(x_{R} - x_{L})}{L} )\\\theta = tan^{-1}(\frac{(0.208 - 0.116)}{0.75} )\\\theta = 7 deg

3 0
2 years ago
Other questions:
  • A rubber band has potential energy of 5 J. If the spring constant of the rubber band is 50 N/m, what is the displacement of the
    8·2 answers
  • A tennis ball bounces on the floor three times, and each time it loses 23.0% of its energy due to heating. how high does it boun
    9·1 answer
  • Alan wrote the following examples of changes in substance.
    15·2 answers
  • How many turns should a 10-cm long ideal solenoid have if it is to generate a 1.5-mT magnetic field when 1.0 A of current runs t
    12·1 answer
  • Our two intrepid relacar drivers are named Pam and Ned. We use these names to make it easy to remember: measurements made by Pam
    5·1 answer
  • While a car is stopped at a traffic light in a storm, raindrops strike the roof of the car. The area of the roof is 5.0 m2. Each
    13·1 answer
  • A 6000 kg lorry is reversing into a parking space at a speed of 0.5 m/s but collides with a car. The crumple zone of the car sto
    10·1 answer
  • Particle q1 has a positive 6 µC charge. Particle q2 has a positive 2 µC charge. They are located 0.1 meters apart.
    14·2 answers
  • A light bulb in a battery powered desk lamp has a current of 0.042 A and is connected to a 9.2 V battery. What is the resistance
    9·2 answers
  • 49. A vertically hung 0.50-meter- long spring is stretched from its equilibrium position to a length of 1.00 meter by a weight a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!