The heat released by the water when it cools down by a temperature difference

is

where
m=432 g is the mass of the water

is the specific heat capacity of water

is the decrease of temperature of the water
Plugging the numbers into the equation, we find

and this is the amount of heat released by the water.
Explanation:
Initial time, t₁ = 2:30 pm
Final time, t₂ = 2:30:45
We need to find the motion of students in terms of time. Final time is 45 seconds more than the initial time.
Change in time,

Hence, this is the required solution.
Answer: Dalton’s model
Explanation:
In the attached image we can see four atomic models labeled with four letters:
W represents the current and accepeted atomic model: a nucleus with an electron cloud, where the orbit and position of the electrons around the nucleus is defined by specific regions (associated with specific energy levels) where there is a greater probability of finding the electron at any given moment. It is important to note this model was improved by the works in quantum physics done by Louis de Broglie and Erwin Schrodinger.
X represents Rutherford's model (This model was proposed after Thomson's model). Ernest Rutherford conducted a series of experiments in order to corroborate Thomson's atomic model. However the results of the experiment led him to find out there is a concentration of charge in the atom's core (which was later called nucleus) surrounded by electrons. This lead to a new atomic model, in which the atom has a positive charged nucleus surrounded by negative charged particles that move similar to the orbit of the planet around the Sun.
Y represents Thomson's model, also called the <em>plum pudding</em> model. This scientific found out that atoms contain small subatomic particles with a negative charge (later called electrons). However, taking into consideration that at that time there was still no evidence of the atom nucleus, Thomson thought the electrons were immersed in the atom of positive charge that counteracted the negative charge of the electrons. Just like the raisins embedded in a pudding or bread.
Z represents Bohr's model. This model was proposed by the danish physicist Niels Bohr after Rutherford's model. In fact, this model was Rutherford's model with the following addition: electrons orbit the nucleus (like planets around the sun) in specific orbits at different energy levels around the nucleus.
So, the only missing model is <u>Dalton's model</u>, which was the first atomic model: the atom represented as a solid, indestructible and indivisible mass. An idea that was already accepted by that time since the ancient Greeks.
Answer:
80% (Eighty percent)
Explanation:
The material has a refractive index (n) of 1.25
Speed of light in a vacuum (c) is 2.99792458 x 10⁸ m/s
We can find the speed of light in the material (v) using the relationship
n = c/v, similarly
v = c/n
therefore v = 2.99792458 x 10⁸ m/s ÷ (1.25) = 239 833 966 m/s
v = 239 833 966 m/s
Therefore the percentage of the speed of light in a vacuum that is the speed of light in the material can be calculated as
(v/c) × 100 = (1/n) × 100 = (1/1.25) × 100 = 0.8 × 100 = 80%
Therefore speed of light in the material (v) is eighty percent of the speed of light in the vacuum (c)
Answer:
Total resistance of the circuit is 270.4 ohm
Explanation:
We are given that:
resistance of wire = 0.4 ohm
resistance of bulb = 150 ohm
resistance of rheostat = 120 ohm
We are also given that these components are connected in series. This means that the total resistance is summation of all the series components.
Therefore
Total resistance = 0.4 + 150 + 120 = 270.4 ohm
Hope this helps :)