answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PSYCHO15rus [73]
2 years ago
14

2. Using the solar system data in the

Physics
1 answer:
Fudgin [204]2 years ago
3 0

Answer:

I'm pretty sure the answer would be C.

You might be interested in
A research group at Dartmouth College has developed a Head Impact Telemetry (HIT) System that can be used to collect data about
Olin [163]

Answer:

6.05 cm

Explanation:

The given equation is

2 aₓ(x-x₀)=( Vₓ²-V₀ₓ²)

The initial head velocity V₀ₓ =11 m/s

The final head velocity  Vₓ is 0

The accelerationis given by =1000 m/s²

the stopping distance = x-x₀=?

So we can wind the stopping distance by following formula

2 (-1000)(x-x₀)=[0^{2} -11^{2}]

x-x₀=6.05*10^{-2} m

       =6.05 cm

3 0
2 years ago
A spring is stretched 6 in by a mass that weighs 8 lb. The mass is attached to a dashpot mechanism that has a damping constant o
olya-2409 [2.1K]

Answer:

y= 240/901 cos 2t+ 8/901 sin 2t

Explanation:

To find mass m=weighs/g

  m=8/32=0.25

To find the spring constant

Kx=mg    (given that c=6 in and mg=8 lb)

K(0.5)=8               (6 in=0.5 ft)

K=16 lb/ft

We know that equation for spring mass system

my''+Cy'+Ky=F  

now by putting the values

0.25 y"+0.25 y'+16 y=4 cos 20 t  ----(1) (given that C=0.25 lb.s/ft)

Lets assume that at steady state the equation of y will be

y=A cos 2t+ B sin 2t

To find the constant A and B we have to compare this equation with equation 1.

Now find y' and y" (by differentiate with respect to t)

y'= -2A sin 2t+2B cos 2t

y"=-4A cos 2t-4B sin 2t

Now put the values of y" , y' and y in equation 1

0.25 (-4A cos 2t-4B sin 2t)+0.25(-2A sin 2t+2B cos 2t)+16(A cos 2t+ B sin 2t)=4 cos 20 t

So by comparing the coefficient both sides

30 A+ B=8

A-30 B=0

So we get

A=240/901 and B=8/901

So the steady state response

y= 240/901 cos 2t+ 8/901 sin 2t

6 0
2 years ago
In a distant solar system, a giant planet has
sergeinik [125]

Answer:

mass of the planet: 5.9\,10^{26}\,kg

Explanation:

When a moon keeps a circular orbit around a planet, it is the force of gravity the one that provides the centripetal force to keep it in its circular trajectory of radius R. So if we can write that in such cases (being the mass of the planet "M" and the mass of the moon "m"), we can form an equation by making the centripetal force on the moon equal the force of gravity (using the Newton's Universal Law of Gravity):

m\frac{v^2}{R}=G\frac{M\,m}{R^2}

where we used here the tangential velocity (v) of the moon around the planet. This equation can be further simplified by dividing both sides by "m" and multiplying both sides by the orbital radius R:

m\frac{v^2}{R}=G\frac{M\,m}{R^2}\\v^2=G\frac{M}{R}

Notice that the mass of the moon has actually disappeared from the equation, which tells us that the orbiting velocity and period do not depend on the mass of the moon, but on the mass of the actual planet.

We know the orbital radius R (5.32\,10^5\,km=5.32\,10^8\,m, the value of the Universal Gravitational constant G, and we can estimate the value of the tangential velocity of the moon since we know it period: 36.3 hrs = 388800 seconds.

We know that the moon makes a full circumference (2\,\pi\,R) in 388800 seconds, therefore its tangential velocity is:

v=\frac{2\,\pi\,5.32\,10^8}{388800} \frac{m}{s} \\v=8.6\,10^3\,\frac{m}{s}

where we rounded the velocity to one decimal.

Notice that we have converted all units to the SI system, so when using the formula to solve for the mass of the planet, the answer comes directly in kg.

Now we use this value for the tangential velocity to estimate the mass of the planet in the first equation we made and simplified:

v^2=G\frac{M}{R}\\M=\frac{v^2\,R}{G} \\M=\frac{(8.6\,10^3)^2\,5.32\,10^8}{6.67\,10^{-11}}kg\\M=5.9\,10^{26}\,kg

8 0
2 years ago
The block in the diagram below is AT REST. However, the tension in the cable is not the only thing holding the block back. Stati
Vedmedyk [2.9K]

Answer:

The  tension in the rope is 229.37 N.

Explanation:

Given:

Mass of the block is, m=33.2\ kg

Coefficient of static friction is, \mu = 0.214

Angle of inclination is, \theta = 31.5°

Draw a free body diagram of the block.

From the free body diagram, consider the forces in the vertical direction perpendicular to inclined plane.

Forces acting are mg\cos \theta and normal N. Now, there is no motion in the direction perpendicular to the inclined plane. So,

N=mg\cos \theta\\N=(33.2)(9.8)\cos (31.5)\\N=277.415\ N

Consider the direction along the inclined plane.

The forces acting along the plane are mg\sin \theta and frictional force, f, down the plane and tension, T, up the plane.

Now, as the block is at rest, so net force along the plane is also zero.

T=mg\sin \theta+f\\T=mg\sin \theta +\mu N\\T= (33.2)(9.8)(\sin (31.5)+(0.214\times 277.415)\\T= 170+59.37\\T=229.37\ N

Therefore, the  tension in the rope is 229.37 N.

3 0
2 years ago
A solid cylinder of mass 12.0 kg and radius 0.250 m is free to rotate without friction around its central axis. If you do 75.0 J
faltersainse [42]

Answer:

20 rad/s

Explanation:

mass, m = 12 kg

radius, r = 0.250 m

Moment of inertia of cylinder, I = 1/2 mr²

I = 0.5 x 12 x 0.250 x 0.250 = 0.375 kgm^2

Work done = Change in kinetic energy

Initial K = 0

Final K = 1/2 Iω²

W = 1/2 Iω²

ω² = 2W/ I = 2 x 75 / (0.375)

ω = 20 rad/s

Thus, the final angular velocity is 20 rad/s .

8 0
2 years ago
Other questions:
  • Gravitational potential energy is often released by burning substances. true or false
    15·2 answers
  • If you apply 100.0 N of force to lift an object with a single, fixed pulley, then what is the resistive force?
    8·1 answer
  • The number that is used to show the value of one currency compared to another is called the __________. A. trade rate B. currenc
    6·1 answer
  • The temperature of a system drops by 30°F during a cooling process. Express this drop in temperature in K, R, and °C.
    14·1 answer
  • 2. An airplane traveling north at 220. meters per second encounters a 50.0-meters-per-second crosswind
    13·1 answer
  • When a 100-Ω resistor is connected across the terminals of a battery of emf ε and internal resistance r, the battery delivers 0.
    9·1 answer
  • A gold wire that is 1.8 mm in diameter and 15 cm long carries a current of 260 mA. How many electrons per second pass a given cr
    14·1 answer
  • According to Faraday's law, a coil in a strong magnetic field must have a greater induced emf in it than a coil in a weak magnet
    9·1 answer
  • A proton, starting from rest, accelerates through a potential difference of 1.0 kV and then moves into a magnetic field of 0.040
    13·1 answer
  • Pool girl Paula has a problem. She has dropped two blocks into her pool. One, made of wood, floats on the surface. The other, ma
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!