Two significant figures, the 6 and the 9
Answer:
The amount of work that must be done to compress the gas 11 times less than its initial pressure is 909.091 J
Explanation:
The given variables are
Work done = 550 J
Volume change = V₂ - V₁ = -0.5V₁
Thus the product of pressure and volume change = work done by gas, thus
P × -0.5V₁ = 500 J
Hence -PV₁ = 1000 J
also P₁/V₁ = P₂/V₂ but V₂ = 0.5V₁ Therefore P₁/V₁ = P₂/0.5V₁ or P₁ = 2P₂
Also to compress the gas by a factor of 11 we have
P (V₂ - V₁) = P×(V₁/11 -V₁) = P(11V₁ - V₁)/11 = P×-10V₁/11 = -PV₁×10/11 = 1000 J ×10/11 = 909.091 J of work
Apply conservation of angular momentum:
L = Iw = const.
L = angular momentum, I = moment of inertia, w = angular velocity, L must stay constant.
L must stay the same before and after the professor brings the dumbbells closer to himself.
His initial angular velocity is 2π radians divided by 2.0 seconds, or π rad/s. His initial moment of inertia is 3.0kg•m^2
His final moment of inertia is 2.2kg•m^2.
Calculate the initial angular velocity:
L = 3.0π
Final angular velocity:
L = 2.2w
Set the initial and final angular momentum equal to each other and solve for the final angular velocity w:
3.0π = 2.2w
w = 1.4π rad/s
The rotational energy is given by:
KE = 0.5Iw^2
Initial rotational energy:
KE = 0.5(3.0)(π)^2 = 14.8J
Final rotational energy:
KE = 0.5(2.2)(1.4)^2 = 21.3J
There is an increase in rotational energy. Where did this energy come from? It came from changing the moment of inertia. The professor had to exert a radially inward force to pull in the dumbbells, doing work that increases his rotational energy.
Answer:

Explanation:
given data
density of current sheet = 0.40 A/m
length a = 0.27 m
width b = 0.63 m
For infinite sheet, magnetic field is given as

magnetic flux is given as



