Answer:
Case A
Explanation:
given,
size of bacteria = 1 mm x 1 mm
velocity = 20 mm/s
size of the swimmer = 1.5 m x 1.5 m
velocity of swimmer = 3 m/s
Viscous force

for the bacteria


for the swimmer


from the above force calculation
In case B inertial force that represent mass is more than the inertial force in case of bacteria.
Viscous force is dominant in case of bacteria.
So, In Case A viscous force will be dominant.
Answer:
A) If one travels around a closed path adding the voltages for which one enters the negative reference and subtracting the voltages for which one enters the positive reference, the total is zero.
Explanation:
Kirchhoff's voltage law deals with the conservation of energy when the current flows in a closed-loop path.
It states that the algebraic sum of the voltages around any closed loop in a circuit is always zero.
In other words, the algebraic sum of all the potential differences through a loop must be equal to zero.
Answer:
Time period of the motion will remain the same while the amplitude of the motion will change
Explanation:
As we know that time period of oscillation of spring block system is given as

now we know that
M = mass of the object
k = spring constant
So here we know that the time period is independent of the gravity
while the maximum displacement of the spring from its mean position will depends on the gravity as


so we can say that
Time period of the motion will remain the same while the amplitude of the motion will change
Because of gravity and friction.