answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
siniylev [52]
2 years ago
5

If a single constant force acts on an object that moves on a straight line, the object's velocity is a linear function of time.

The equation v = v_i + at gives its velocity v as a function of time, where a is its constant acceleration. What if velocity is instead a linear function of position? Assume that as a particular object moves through a resistive medium, its speed decreases as described by the equation v = v_i - kx, where k is a constant coefficient and x is the position of the object. Find the law describing the total force acting on this object. (Enter an expression for the magnitude of the total force. Use the following as necessary: m, k, and v.)
Physics
1 answer:
olya-2409 [2.1K]2 years ago
5 0

Answer:

F=mkv

Explanation:

Given that

v = v_i - kx

We know that acceleration a given as

a=\dfrac{dv}{dt}

v = v_i - kx

\dfrac{dv}{dt}=\dfrac{dv_i}{dt}-k\dfrac{dx}{dt}

\dfrac{dv}{dt}=0-k\dfrac{dx}{dt}

We know that

F=m\dfrac{dv}{dt}

F=-mk\dfrac{dx}{dt}

F=-mkv

So the magnitude of force F

F=mkv

You might be interested in
A wooden disk of mass m and radius r has a string of negligible mass is wrapped around it. If the disk is allowed to fall and th
Tju [1.3M]

Answer:

a = \frac{2}{3}g

T = \frac{mg}{3}

Explanation:

As the disc is unrolling from the thread then at any moment of the time

We have force equation as

mg - T = ma

also by torque equation we can say

TR = I\alpha

TR = \frac{1}{2}mR^2(\frac{a}{R})

T = \frac{1}{2}ma

Now we have

mg - \frac{1}{2}ma = ma

mg = \frac{3}{2}ma

a = \frac{2}{3}g

Also from above equation the tension force in the string is

T = \frac{1}{2}ma

T = \frac{mg}{3}

7 0
2 years ago
A carousel that is 5.00 m in radius has a pair of 600-Hz sirens mounted on posts at opposite ends of a diameter. The carousel ro
Gelneren [198K]

Answer:

59cm

Explanation:

angular velocity = 0.8 rad/s

linear velocity = angular velocity * radius

                        =0.8rad/s * 5m

                        = 4 m/s

wavelength = (V + U)/F

where,

V is the velocity of the wave

U is the velocity of the source

F is the frequency of the source.

wavelength = (350 m/s + 4 m/s ) / 600 Hz

Wavelength = 0.59m or 59 cm

4 0
2 years ago
A tube with a cap on one end, but open at the other end, produces a standing wave whose fundamental frequency is 130.8 Hz. The s
Angelina_Jolie [31]

Answer:

A. 261.6 hz.

B. 0.656 m.

Explanation:

A.

When yhe tube is open at one end and closed at the other,

F1 = V/4*L

Where,

F1 = fundamental frequency

V = velocity

L = length of the tube

When the tube is open at both ends,

F'1 = V/2*L

Where

F'1 = the new fundamental frequency

Therefore,

V/2*L x V/4*L

F'1 = 2 * F1

= 2 * 130.8

= 261.6 hz.

B.

F1 = V/4*L

Or

F'1 = V/2*L

Given:

V = 343 m/s

F1 = 130.8

L = 343/(4 * 130.8)

= 0.656 m.

8 0
1 year ago
A gymnast's backflip is considered more difficult to do in the layout (straight body) position than in the tucked position. Why?
spin [16.1K]

Answer:

The body's rotational inertia is greater in layout position than in tucked position. Because the body remains airborne for roughly the same time interval in either position, the gymnast must have much greater kinetic energy in layout position to complete the backflip.

Explanation:

A gymnast's backflip is considered more difficult to do in the layout (straight body) position than in the tucked position.

When the body is straight , its moment of rotational inertia is more than the case when he folds his body round. Hence rotational inertia ( moment of inertia x angular velocity ) is also greater. To achieve that inertia , there is need of greater imput of energy in the form of kinetic energy  which requires greater effort.

So a gymnast's backflip is considered more difficult to do in the layout (straight body) position than in the tucked position.

6 0
2 years ago
An object undergoing simple harmonic motion has a maximum displacement of 6.2 m at t=0.0 s. if the angular frequency of oscillat
Law Incorporation [45]

Answer:

C

Explanation:

From above question we know that

A = 6.2 m

f = 1.6 rad/s

t = 3.5 s

x =?

We know that,

x = Acos(2pie ft)

Putting all values in above eq.

x = 6.2 x cos(2x3.142x1.6x3.5)

x = - 4.8

Displacement can never be negative so ignore - sign.

4 0
1 year ago
Other questions:
  • When calculating the mechanical advantage of a lever, what two pieces of information are needed?
    8·2 answers
  • The population in the United States in 2015 was 321 million people. It is projected to increase to 438 million people by the yea
    11·2 answers
  • A tin can whirled on the end of a string moves in a circle because
    10·1 answer
  • A majorette in the Rose Bowl Parade tosses a baton into the air with an initial angular velocity of 2.5 rev/s. If the baton unde
    11·1 answer
  • Which letter correctly identifies the part of the hydrologic cycle that is most directly affected by impervious building materia
    10·1 answer
  • A 0.500-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of
    13·1 answer
  • An electric winch is used to raise a 40-kg package and a 10-kg package vertically up the side of a building as pictured in the d
    9·1 answer
  • A 161 lb block travels down a 30° inclined plane with initial velocity of 10 ft/s. If the coefficient of friction is 0.2, the to
    5·1 answer
  • Una manguera de agua de 1.3 cm de diametro es utilizada para llenar una cubeta de 24 Litros. Si la cubeta se llena en 48 s. A) ¿
    14·1 answer
  • A ball bearing of radius of 1.5 mm made of iron of density
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!