Answer:
Each half of the force pair acts on a different object.
Explanation:
When a tennis racket strikes a tennis ball a pair force is produced. when the racket strikes the ball the racket exerts an action force on the tennis ball, according to Newton's third law for every action there is an equal and opposite reaction force, as a reaction the ball exert an equal and opposite force on the racket. These forces are often called pair forces.
As the forces acts on different bodies (Action force act on ball and reaction force act on racket) so the net force tennis ball is never zero.
Answer:
The resistance will be 2×R
Explanation:
We note that the resistivity of a cylindrical wire is given by the following relation;

Where:
ρ = Resistivity of the wire
R = The wire resistance
A = Cross sectional area of the wire = π·D²/4
L = Length of the wire
Rearranging, we have;

If the length and the diameter are both cut in half, we have;
L₂ = L/2
A₂ =π·D₂²/4 =
Therefore, the new resistance, R₂ can be expressed as follows;

Hence, the new resistance R₂ = 2×R, that is the resistance will be doubled.
Answer:
The magnitude of the acceleration of the car is 35.53 m/s²
Explanation:
Given;
acceleration of the truck,
= 12.7 m/s²
mass of the truck,
= 2490 kg
mass of the car,
= 890 kg
let the acceleration of the car at the moment they collided = 
Apply Newton's third law of motion;
Magnitude of force exerted by the truck = Magnitude of force exerted by the car.
The force exerted by the car occurs in the opposite direction.

Therefore, the magnitude of the acceleration of the car is 35.53 m/s²
<span>Storm cells in a squall line typically move from the southwest to the northeast, and as the mature cells in the northeast begin to die off, new ones are formed at the opposite end to advance the line. The air in the southwest corner has strong vertical updrafts that allow new cells to grow and develop into thunderstorms.</span>
Answer:
a) V = 1.866 10² V
, b) V = 3.424 10⁵ V
, c) v = 8.1 10⁶ m / s
Explanation:
a) the potential difference is requested to accelerate the electrons up to 2.7% of the speed of light
v = 0.027 c
v = 0.027 3 10⁸
v = 8.1 10⁶ m / s
for this part we can use the conservation of mechanical energy
starting point. When electrons are at rest
Em₀ = U = q V
final point. Electrons with maximum speed
Em_f = K = ½ m v2
Em₀ = Em_{f}
e V = ½ m v²
V = ½ m v² / e
let's calculate
V = ½ 9.1 10⁻³¹ (8.1 10⁶)² / 1.6 10⁻¹⁹
V = 1.866 10² V
V = 1866 V
b) if this acceleration protons is the mass of the proton is m_{p} = 1.67 10-27
V = ½ 1.67 10⁻²⁷ (8.1 10⁶)² / 1.6 10⁻¹⁹
V = 3.424 10⁵ V
V = 342402 V
c)
this potential difference should give the protons the same speed as the electrons
v = 8.1 10⁶ m / s