answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verdich [7]
2 years ago
8

A cylindrical wire has a resistance R and resistivity ρ. If its length and diameter are BOTH cut in half, what will be its resis

tance
Physics
1 answer:
snow_lady [41]2 years ago
8 0

Answer:

The resistance will be 2×R

Explanation:

We note that the resistivity of a cylindrical wire is given by the following relation;

\rho = \frac{RA}{L}

Where:

ρ = Resistivity of the wire

R = The wire resistance

A = Cross sectional area of the wire = π·D²/4

L = Length  of the wire

Rearranging, we have;

R= \frac{\rho L}{A}

If the length and the diameter are both cut in half, we have;

L₂ = L/2

A₂ =π·D₂²/4 = \pi \cdot \left (\frac{D}{2}   \right )^{2} \times \frac{1}{4}  = \pi \cdot \frac{D^{2}}{16} = A/4

Therefore, the new resistance, R₂ can be expressed as follows;

R_2= \frac{\rho \frac{L}{2} }{\frac{A}{4} } = \rho \frac{L}{2} \times \frac{4}{A} = 2 \times  \frac{\rho L}{A}

Hence, the new resistance R₂ =  2×R, that is the resistance will be doubled.

You might be interested in
A 2-column table with 4 rows. The first column labeled substance has entries calcium chloride, calcium bromide, calcium carbonat
yanalaym [24]

Answer:

SAMPLE C

Explanation:

5 0
2 years ago
Read 2 more answers
The voltage across the terminals of a 9.0 v battery is 8.5 v when the battery is connected to a 60 ω load. part a what is the ba
snow_lady [41]
Refer to the diagram shown below.

i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω

Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5         (10

Also,
R₂*i = 9.5         (2)

Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A

From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)

Answer: 0.08 Ω

3 0
2 years ago
Read 2 more answers
two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same i
NARA [144]

A. The difference in the two ball's time in the air is 3 seconds

B. The velocity of each ball as it strikes the ground is 24.5 m/s

C. The balls 0.500 s after they are thrown are 14.7 m apart

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Initial Height = H = 19.6 m

Initial Velocity = u = 14.7 m/s

<u>Unknown:</u>

A. Δt = ?

B. v = ?

C. Δh = ?

<u>Solution:</u>

<h2>Question A:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

0 = 19.6 - 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 - 14.7t - 4.9t^2

4.9t^2 + 14.7t - 19.6 = 0

t^2 + 3t - 4 = 0

(t + 4)(t - 1) = 0

(t - 1) = 0

\boxed {t = 1 ~ second}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

0 = 19.6 + 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 + 14.7t - 4.9t^2

4.9t^2 - 14.7t - 19.6 = 0

t^2 - 3t - 4 = 0

(t - 4)(t + 1) = 0

(t - 4) = 0

\boxed {t = 4 ~ seconds}

The difference in the two ball's time in the air is:

\Delta t = 4 ~ seconds - 1 ~ second

\large {\boxed {\Delta t = 3 ~ seconds} }

<h2>Question B:</h2><h3>First Ball</h3>

v^2 = u^2 - 2gH

v^2 = (-14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

<h3>Second Ball</h3>

v^2 = u^2 - 2gH

v^2 = (14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

The velocity of each ball as it strikes the ground is 24.5 m/s

<h2>Question C:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

h = 19.6 - 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 11.025 ~ m}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

h = 19.6 + 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 25.725 ~ m}

The difference in the two ball's height after 0.500 s is:

\Delta h = 25.725 ~ m - 11.025 ~ m

\large {\boxed {\Delta h = 14.7 ~ m} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

6 0
2 years ago
You drop a 6.0x10^-2 kg ball from height of 1.0m above hard flat surface. Ball strikes surface and energy decreases by 0.14J, th
harina [27]
If you drop a <span>6.0x10^-2 kg ball from height of 1.0m above hard flat surface, and a</span>fter the ball had bounce off the flat surface, the kinetic energy of the ball would be mgh - 0.14 = 0.45. 
3 0
2 years ago
Read 2 more answers
A string is wrapped around a pulley with a radius of 2.0 cm and no appreciable friction in its axle. The pulley is initially not
stiks02 [169]

Answer:

2

Explanation:

2

5 0
2 years ago
Read 2 more answers
Other questions:
  • A granite monument has a volume of 25,365.4 cm3. The density of granite is 2.7 g/cm3. Use this information to calculate the mass
    10·1 answer
  • Henry can lift a 200 N load 20 m up a ladder in 40 s. Ricardo can lift twice the load up one-half the distance in the same amoun
    14·2 answers
  • Jason wanted to find the Volume of two rocks How could you use the tools below that is shown to find the volume of these irregul
    11·2 answers
  • Calculate the amount of energy produced in a nuclear reaction in which the mass defect is 0.187456 amu.
    13·2 answers
  • A block with mass m = 7 kg is attached to two springs with spring constants kleft = 37 N/m and kright = 48 N/m. The block is pul
    9·1 answer
  • Carbon dioxide (CO2) gas within a piston–cylinder assembly undergoes a process from a state where p1 = 5 lbf/in.2 , V1 = 2.5 ft3
    9·1 answer
  • A student, along with her backpack on the floor next to her, are in an elevator that is accelerating upward with acceleration a.
    12·1 answer
  • A certain plucked string produces a fundamental frequency of 150 hz. Which frequency is not one of the harmonics produced by tha
    8·1 answer
  • A positively-charged particle is released near the positive plate of a parallel plate capacitor. a. Describe its path after it i
    11·1 answer
  • To practice Problem-Solving Strategy 17.1 for wave interference problems. Two loudspeakers are placed side by side a distance d
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!